By Wolfgang Keller
Originally published 2024-04-27
Last modified 2024-06-01
Some beginner tips for using Mathematica.
Convert an expression to a string: TextString[expression] // InputForm
where expression
denotes the expression to convert.
See
Remark (2024-06-01): Better use ToString[InputForm[expression]]
?
TextString[RootApproximant[1.41421356237, 2]] // InputForm
returns "1.41421"
while ToString[InputForm[RootApproximant[1.41421356237, 2]]]
yields the expected
"Sqrt[2]"
.
Array[Subscript[a, #1, #2] &, {3, 3}] // MatrixForm
Code taken from Subscript: Place a character below the baseline—Wolfram Documentation [visited 2024-04-27T00:04:48Z]. See also
If you copy the code of the first example of SemidefiniteOptimization—Wolfram Language Documentation [visited 2024-04-26T22:42:27Z], you get
Subscript[a, 0] = ({
{0, 1},
{1, 0}
}); Subscript[a, 1] = ({
{1, 0},
{0, 0}
}); Subscript[a, 2] = \!\(\*
TagBox[
RowBox[{"(", "", GridBox[{
{"0", "0"},
{"0", "1"}
},
GridBoxAlignment->{"Columns" -> {{Center}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997`], {
Offset[0.7]},
Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "", ")"}],
Function[BoxForm`e$,
MatrixForm[BoxForm`e$]]]\);
res = SemidefiniteOptimization[2 Subscript[x, 1] + 3 Subscript[x, 2],
Subscript[a, 0] + Subscript[a, 1] Subscript[x, 1] +
Subscript[a, 2] Subscript[x, 2]
\!\(\*UnderscriptBox[\(\[VectorGreaterEqual]\),
TemplateBox[{"2"},
"SemidefiniteConeList"]]\) 0, {Subscript[x, 1], Subscript[x, 2]}]
This code is confusing to read, and in particular gives barely any hint how to create the relation for a matrix being semidefinite (\(\underset{S^2_+}{\succeq}\)).
The following code considerably simplifies this example:
a0 = {{0, 1}, {1, 0}}; a1 = {{1, 0}, {0, 0}}; a2 = {{0, 0}, {0, 1}};
res = SemidefiniteOptimization[2 x1 + 3 x2,
VectorGreaterEqual[{a0 + a1 x1 + a2 x2, 0}, {"SemidefiniteCone", 2}],
{x1, x2}]
Note that you can also use Minimize
if you want an exact result:
a0 = {{0, 1}, {1, 0}}; a1 = {{1, 0}, {0, 0}}; a2 = {{0, 0}, {0, 1}};
res = Minimize[2 x1 + 3 x2,
VectorGreaterEqual[{a0 + a1 x1 + a2 x2, 0}, {"SemidefiniteCone", 2}],
{x1, x2}]
Concerning creating the semidefinite partial ordering via VectorGreaterEqual
,
see VectorGreaterEqual—Wolfram Language Documentation [visited 2024-04-27T00:22:25Z].`