B
AtmeL APPLICATION NOTE

ATO04055: Using the IwIP Network Stack

Atmel SAM4E

Introduction

This application note aims at describing and understanding the IwlP stack, in order to
quickly design efficient connected applications. The various IwIP APls will be
discussed in depth as well as porting the stack to any hardware like the SAM4E
GMAC. Finally, detailed examples will be outlined along with the memory footprint
information.

It is expected from the user to understand the basic concept described in the Open
Systems Interconnection (OSI) model along with the TCP/IP protocol.

Features

e Atmel® AT91SAMA4E Ethernet Gigabit MAC (GMAC) module
Compatible with IEEE® 802.3 Standard
10/100Mbps operation
MII Interface to the physical layer

e Direct Memory Access (DMA) interface to external memory
e |wIP TCP/IP APIs

® |wIP memory management

e |wIP GMAC network interface driver

® |wIP demo for IAR™ 6.5
e Raw HTTP basic example
o Netconn HTTP stats example

e |wIP debugging
® |wlIP optimizing SRAM footprint

42233A-SAM-03/2014

Table of Contents

1. LWIP Stack OVEIVIEWuiiiiiiieeiiiiiiieeee et 3

1.1 Presentationooooiiiiie s 3

1.2 FOIAEI STIUCIUE ...ooeiieieie et ea e e 4

D Y O N . 5

2.1 RAW AP e 5

2.2 NELCONN AP .t 9

2.3 BSD SOCKEE APl ..o 11

3. IwIP Memory Managementccoovvviiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeee 12

3.1 POUF STIUCIUIE ... e 12

3.2 PBUF AP e 13

4. Developing a Network Interface for IWIPccccooiiiiiiiiiiie s 14

4.1 ADSIraction LAYErsoooiiiiii e 14

4.2 GMAC Network INterfacecooiviuiiiiiei e 14

421 DIMA Programmingocueeeeeie e e e e e e e e 14

422 Receive BUFErs ... 15

423 Transmit BUFfErSooiiiiiii e 16

5. IWIP Demo AppliCatioNScooiiiiiiiiiiiiee e 17

5.1 Basic HTTP Server using the Raw APl ... 17

51.1 COAE OVEIVIEBW ...ttt e e e et e e e e e e eanes 17

51.2 Memory FOOTPIINT.... ...ttt eeeeeeeeeenes 23

5.2 HTTP Stats Server using the Netconn APl ... 24

5.2.1 COAE OVEIVIEW ...ttt e e e e e e e e 25

5.2.2 Memory FOOIPINT.......oooii e 29

6. Debugging With IWIP ... 30

7. Optimizing the SRAM Footprint..........coooiiiiiiiiiiiiieiiees 31

71 HEAD IMEBIMOTY ...ttt e e e e e e e aaaeeean 31

7.2 MeMOIY POOIS ...t 31

7.3 SHACK SIZE ittt 32

8. ReVISION HIStOrYcooiiiiieiieie e 33

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 2
42233A-SAM-03/2014

1. LwlIP Stack Overview

1.1 Presentation

The lightweight Internet Protocol (IwIP) is a small independent implementation of the network protocol suite that has
been initially developed by Adam Dunkels.

The focus of the IwIP network stack implementation is to reduce memory resource usage while still having a full scale
TCP. This makes IwIP suitable for use in embedded systems with tens of kilobytes of free RAM and room for around 40
kilobytes of code ROM.

IwIP supports the following protocols:

ARP (Address Resolution Protocol)

IP (Internet Protocol) v4 and v6

TCP (Transmission Control Protocol)

UDP (User Datagram Protocol)

DNS (Domain Name Server)

SNMP (Simple Network Management Protocol)

DHCP (Dynamic Host Configuration Protocol)

ICMP (Internet Control Message Protocol) for network maintenance and debugging
IGMP (Internet Group Management Protocol) for multicast traffic management
PPP (Point to Point Protocol)

PPPoE (Point to Point Protocol over Ethernet)

IwlP offers three different APIs designed for different purposes:

Raw API is the core API of IwlP. This API aims at providing the best performances while using a minimal code
size. One drawback of this API is that it handles asynchronous events using callbacks which complexify the
application design.

Netconn API is a sequential API built on top of the Raw API. It allows multi-threaded operation and therefore
requires an operating system. It is easier to use than the Raw API at the expense of lower performances and
increased memory footprint.

BSD Socket API is a Berkeley like Socket implementation (Posix/BSD) built on top of the Netconn API. Its
interest is portability. It shares the same drawback than the Netconn API.

(Socket API)
Netconn API
[Raw API]
. v

IwlP is licensed under a BSD-style license: http://lwip.wikia.com/wiki/License.

IwlP source can be fetched from here: http://savannah.nongnu.org/projects/Iwip.

Note: IwlP is also present as a thirdparty in the Atmel Software Framework (ASF).

Altmel

AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 3

42233A-SAM-03/2014

http://lwip.wikia.com/wiki/License�
http://savannah.nongnu.org/projects/lwip�

1.2 Folder Structure
Atmel provides different versions of the IwIP network stack under the thirdparty folder in the ASF. Note that in the ASF,
each IwlP version comes with a port responsible for enabling hardware support for each SAM device.
IwlP example folder structure is detailed in Figure 1-1.
Figure 1-1. LwIP Folder Structure
Bl IC3) thirdparty
I cmsIs
I freertos
E 5 wip
H) wip-1.4.1
I doc
I sre
I test
B) wip-port-1.4.1
=l) sam
I3 include
I netif
= IC5) netconn_htip_stats_example
I data
I netwaork
Bl 53 sam4e16e_sam4e_ek
D iar
= L) raw_http_basic_example
I netwark
=l 5 sam4e16e_samde_ek
I iar
e raw_http_basic_example: basic HTTP server example using Raw API.
o samdel16e_samde_ekliar: the IAR project folder for the raw HTTP basic example.
e netconn_http_stats_example: advanced HTTP server example using Netconn API.
e samde16e_samde_ekl/iar: the IAR project folder for the Netconn HTTP stats example.
e |wip-1.4.1/src: IwlIP source files.
e api: IwIP Netconn and BSD API implementation.
e core: IwIP core Raw APl implementation.
e |wip-port-1.4.1/sam: IwIP MAC driver for IwIP. Support both standalone and RTOS modes.
e arch: compiler and RTOS abstraction layers.
e netif: network interface driver for SAM4E GMAC interfacing with the IwIP network stack.
A IwlP project always contains a IwIP configuration file named Iwipopts.h. This file is located at the project’s root
directory. Note that this file does not include all the possible IwIP options. Any missing option from this configuration file
can be imported (copy/paste) from the thirdparty/lwip/lwip-1.4.1/src/include/lwip/opt.h file.
/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 4
42233A-SAM-03/2014

IwiP TCP API

21

Raw API

The Raw API is a non-blocking, event-driven API designed to be used without an operating system that implements
zero-copy send and receive. This APl is also used by the core stack for interaction between the various protocols. It is
the only API available when running IwlIP without an operating system.

Applications using the Raw APl implement callback functions, which are invoked by the IwIP core when the
corresponding event occurs. For instance, an application may register to be notified via a callback function for events
such as incoming data available (tcp_recv), outgoing data sent (tcp_sent), error notifications (tcp_err), etc. An
application should provide callback functions to perform processing for any of these events.

Table 2-1 provides a summary of the Raw API functions for TCP.

Table 2-1.

TCP Raw API Functions

| APlfunction _ Deseripton

TCP connection setup

Sending TCP data

Receiving TCP data

Application polling

Closing and aborting

connections

tcp_new

tcp_bind
tcp_listen

tcp_accept

tcp_accepted
tcp_connect

tcp_write
tcp_sent

tcp_recv
tcp_recved

tcp_poll

tcp_close

tcp_err

tcp_abort

Creates a new connection PCB (Protocol Control Block). A PCB is a structure
used to store connection status.

Binds the pcb to a local IP address and port number.
Commands a pcb to start listening for incoming connections.

Sets the callback function to call when a new connection arrives on a listening
connection.

Inform IwlP that an incoming connection has been accepted.
Connects to a remote TCP host.
Queues up data to be sent.

Sets the callback function that should be called when data has successfully
been sent and acknowledged by the remote host.

Sets the callback function that will be called when new data arrives.
Informs IwlP core that the application has processed the data.

Specifies the polling interval and the callback function that should be called to
poll the application. This feature can be used to check if there are some
pending data to be sent or if the connection needs to be closed.

Closes a TCP connection with a remote host.

Sets the callback function to call when a connection is aborted because of an
error.

Aborts a TCP connection.

To enable the IwIP stack, the user application has to perform two functions calls from the main program loop:

e ethernetif_input() to treat incoming packets (function defined in the network interface GMAC driver)

e timers_update() to refresh and trigger the IwlP timers (defined in the user application, typically under the

network folder)

Figure 2-1 shows the IwIP receive flow from the ethernetif_input() function (Iwip-port-1.4.1/src/sam/netif/'sam4e_gmac.c)
to the appropriate input protocol function in the IwlP core (Iwip-1.4.1/src/core/ files). The ethernetif_input() function
should typically be called from the main program loop.

Altmel

AT04055: Using the IwIP Network Stack [APPLICATION NOTE] S

42233A-SAM-03/2014

Figure 2-1. IwlIP Receive Flow

ethernetif_input low_level input

ethernet_input

ARP |1

etharp_arp_input etharp ip input

update_arp_entry update_arp_entry

done
ip_input
choose the netif
fragmontod 7 forward ?
] g i [ST e LR
alsa
ICMP ICMP
uDnP
upd input icmp_input igmp input

The ip_input() function checks for a valid IP checksum and ensures that the packet is addressed to the device.

The raw_input() function tries to find a raw protocol control block (PCB) to handle the incoming packet. Raw PCBs are
used to implement custom network protocols. If there is no raw PCB to be used, the appropriate input protocol function
is called using the protocol field from the IP header.

/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 6

42233A-SAM-03/2014

Figure 2-2. IwIP TCP Input Flow

For a conn in
tcp-active pcbs?

For tcp_tw_pcbs?

tcp_timewait_input

tcp listen input
Y
if (ACK sent)) i
EVENT_SENT recy ACK recv SYN

if (data avail) |tu:p_rst| tcp_output
EVENT_RECV({data) [mend SYHNJACK)

if (FIN)
EVENT _RECV {NULL)

done

As shown in Figure 2-2, the tcp_input() function tries to find the PCB keeping track of the connection used by the
incoming packet (using IP and port numbers). The TCP checksum is verified, then depending on the incoming packet,
the tcp_input() function will eventually inform the user application on specific events (like data sent, data received, etc)
using the previously registered callbacks. See Table 2-1 for some functions to register these callbacks.

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 7

42233A-SAM-03/2014

Figure 2-3. IwlIP TCP Output Flow

tocp_write tocp_output
add to pch unsent queus read pch unsent quens Tlser &‘PP

done tcp_output_segment I

ip_output

ip_output_if IwIP

I

etharp_output I

I

etharp _send ip

low_ level output I MNetif

The IwlP network stack provides the tcp_write() function for sending data to a remote host, as shown in Figure 2-3. It
takes a pointer to the PCB structure (representing the active connection to write to), data buffer, data size and API flags
as parameters. This function attempts to build TCP segments from the user data buffer. A TCP segment is referred to
as a TCP header and a user data. This segment is made of several PBUFs which allow the user data buffer to be either
referenced or copied depending on the TCP_WRITE_FLAG_COPY flag. If the user data size is superior to the defined
TCP_MSS, the data buffer spreads onto several TCP segments. The TCP segments are then added to the PCB'’s
unsent queue. Alternatively, the user data can be directly prepended to the last enqueued TCP segment if its remaining
size does not exceed the TCP_MSS value. Note that at this stage no data has been sent over the Ethernet link.

The TCP segments are only sent when a call to the tcp_output() function is made, as shown in Figure 2-3. This function
is also automatically triggered by IwlP in the following cases:

e Inside the tcp_input() function (when TCP acknowledgement has to be sent right away)

e Inside the slow and fast timers (where retransmitting TCP segments can be required)

At this stage, the TCP segment gets encapsulated with the IP header (ip_output() function) and Ethernet header
(etharp_output() function). Finally, the Ethernet frame is sent to the GMAC IP via the low_level_output() function located
in the IwIP netif driver (Iwip-port-1.4.1/src/sam/netif/sam4e_gmac.c).

When using the Raw API in a multithreaded environment, beware that there is no protection against concurrent
access. Consequently, all the network part of the application must remain in a single thread context.

/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 8

42233A-SAM-03/2014

2.2 Netconn API

The Netconn APl is a sequential API designed to be used with an operating system while preserving the zero-copy
functionality. This API is built on top of the Raw API and makes the stack easier to use compared to the event-driven
Raw API.

A Netconn API based program would typically use the following threads:

e ftcpip-thread: the IwlIP core thread which actually makes use of the Raw API

e GMAC: the netif driver thread in charge of passing Ethernet frame from the GMAC IP to the tcpip-thread

e One or more user application threads performing open/read/write/close operations on Netconn connections
The above threads are communicating using message passing which is fully handled by the Netconn API.

Table 2-2 provides a summary of the Netconn API functions for TCP.

Table 2-2. TCP Netconn API Functions

| APIfunction | Descriptn

netconn_new Creates a new Netconn connection.

netconn_bind Binds a Netconn structure to a local IP address and port number.
netconn_listen Sets a TCP Netconn connection into listen mode.

netconn_accept Accepts an incoming connection on a listening TCP Netconn connection.
netconn_connect Connects to a remote TCP host using IP address and port number.
netconn_recv Receives data from a Netconn connection.

netconn_write Sends data on a connected TCP Netconn connection.

netconn_close Closes a TCP Netconn connection without deleting it.

netconn_delete Deletes an existing Netconn connection.

Figure 2-4 gives an overview of an input TCP packet processing while using the Netconn API. Depending on the thread
priorities, a minimum of 4 context switches is required to process one single TCP packet. If the user application requires
maximum performances Raw API should be considered instead of the Netconn API.

/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 9

42233A-SAM-03/2014

Figure 2-4. IwlIP TCP Input Flow using the Netconn API (RTOS based)

GMAC ISR

releaze R semaphore

1 |
e G v O S g & i
* ‘reate mbox message : P : CMAC Thread
| low_level input I : X
i |
| i
- |
tcpip_thread |
4
LwIP Thread
tcp_input T call netconn callback Msg: |
N . conn->>callback(RECV+] received pbuf '
EVENT_RECHW 1 X
1 1
- I
i |
: |
TCPIP_M3G_API: call neteonn callback netconn recv netconn E
do_recv | conn-=callback(RECV-) convert pbuf to netbuf recvmbiox [
1
: User App Thread
1
1 ,' l |
b o ——- :
: : User Application '
: | (ESTABLISHED) !
: |
: tcp_recved done b
tclgél})c adjust recv window ' LwIP Thread
- send ACK :

As opposed to the Raw API approach, the GMAC driver does not process the TCP packet directly. Instead by calling
the tcpip_input() function it notifies the IwlP core thread using the tcpip “mbox” mailbox that a packet is ready for
processing. Then the IwlP core thread wakes up, reads the tpcip “mbox” message and starts the packet processing
using the Raw API (calling ethernet_input() function, as shown in Figure 2-1). When a valid TCP packet is found, the

IwlP core thread notifies the corresponding Netconn socket using the “recvmbox” mailbox.

/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE]

42233A-SAM-03/2014

10

From the user application point of view, when calling the netconn_recv() function, the user application thread waits for a
message in the recvmbox to know if a TCP input packet has arrived. The user application can wait forever or for the
specified amount of time if LWIP_SO_RCVTIMEO has been defined in the configuration file. When the “recvmbox”
message is available, the user application thread wakes up and sends a notification message to the tcpip “mbox” to give
a chance to acknowledge the packet and to adjust the receive window if necessary. During that time the user
application thread waits for a notification semaphore only released by the IwlP core thread when the operation is
completed. Finally, the netconn_recv() function returns the netbuf structure containing the TCP packet data to the user
application.

The following mailbox sizes must be defined in the IwlP configuration file when using the Netconn API:
e TCPIP_MBOX_SIZE: size of the core tcpip mailbox
e DEFAULT_ACCEPTMBOX_: SIZE size of the accept mailbox
e DEFAULT_TCP_RECVMBOX_: SIZE size of the TCP recv mailbox

2.3 BSD Socket API
The IwlP socket API is built on top of the Netconn API and offers portability for BSD socket based applications. Table 2-
3 provides a summary of the Socket API functions.
Table 2-3. Socket API Functions
socket Creates a new socket.
bind Binds a socket to a local IP address and port number.
listen Listens for incoming connections on socket.
accept Accepts an incoming connection on a listening socket.
connect Connects a socket to a remote host using IP address and port number.
read Reads data from a socket.
write Writes data to a socket.
close Closes a socket.
To enable BSD-style socket support; the IwIP configuration file must define LWIP_SOCKET and
LWIP_COMPAT_SOCKETS. For more information about these defines please refer to src/include/lwip/opt.h
configuration file.
/ItmeL AT04055: Using the IwIP Network Stack [APPLIC,‘;\;'ala(iI\SIADlg;IZEJ 11

3.1

Altmel

IwIP Memory Management

Pbuf Structure

The IwlP pbuf data structure is a linked list of buffers designed to represent one network packet. Indeed, when the user
application performs a tcp_write() function call with a user data, the IwlP stack prepends (and possibly appends other
pbufs) to encapsulate the various protocol headers to build the corresponding packet. Depending on the pbuf allocation
the IwlP stack can leave enough room to add the protocol header, or it can simply add another pbuf in the pbuf’s linked
list. Using the pbuf data structure, headers can be added without copying the entire buffer.

This data structure provides support for allocating dynamic memory to hold packet data, and for referencing data in
static memory. A pbuf linked list is refered to as a pbuf chain, hence a complete packet may span over several pbufs.

Figure 3-1. A PBUF RAM Chained with a PBUF ROM that has Data in External Memory

naxt = next
payload payload
lan len
. tot_len tot len
flags ref flags ref
Room for header

The pbuf structure has the following fields:
e next: pointer to the next pbuf element in the pbuf linked list
e payload: pointer to the data
e len: length of the payload
e tot_len: sum of the len fields of the pbuf chain
e flags: pbuf type
e ref: reference count. A pbuf can only be freed if its reference count is zero

The pbuf type can be one of the following:

e PBUF_POOL: a number of PBUF_POOL_SIZE pbufs are statically pre allocated with a fixed size of
PBUF_POOL_BUFSIZE (defined in the IwlP configuration file). This is the pbuf type used for packet reception
as it provides the fastest allocation.

e PBUF_RAM: pbuf are dynamically allocated from a contiguous memory area. The PBUF_RAM allocation is
slower than the PBUF_POOL and can lead to memory fragmentation.

e PBUF_ROM: pbuf used to pass constant data by reference.

e PBUF_REF: pbuf used to pass data from the user application by reference. As the pointed data is not
constant, it may be internally copied into PBUF_RAM if IwIP needs to enqueue this pbuf.

AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 12

42233A-SAM-03/2014

3.2 Pbuf API

Table 3-1 shows a brief summary of the pbuf API. Implementation can be found in the src/core/pbuf.c file.

Table 3-1. Pbuf API Functions

API function

pbuf_alloc Allocates a new pbuf.

pbuf_ref Increments the reference count of a pbuf.

pbuf_free Decrements the pbuf reference count. When reference equals zero, the pbuf is de-allocated.
pbuf_clen Returns the number of pbuf in a pbuf chain.

pbuf_cat Concatenates two pbufs.

pbuf_take Copies the provided data into a pbuf.

When using the Netconn API, pbufs are wrapped in a netbuf structure. The netbuf APl implementation can be found in
the thirdparty/lwip/lwip-1.4.1/src/api/netbuf.c file.

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 13

42233A-SAM-03/2014

4, Developing a Network Interface for IwlP
4.1 Abstraction Layers
The IwlP network stack has defined a set of function prototypes to interface with MAC hardware. The network interface
drivers are located in the thirdparty/lwip/lwip-port-1.4.1/sam/netif folder. See Table 4-1 for the function list and summary.
Table 4-1. Network Interface Functions for the IwIP Network Stack
AP function
ethernetif_init Calls low_level_init() function and initializes the netif structure.
e Calls low_level_input() function to read a packet from the MAC hardware and passes it to the IwIP
ethernetif_input . .
input function.
low_level_init Initializes the MAC hardware.
low_level_input Reads one packet from the MAC hardware.
low_level_output Writes one packet to the MAC hardware.
IwlIP has been designed to be compiled on many different platforms; hence the thirdparty/lwip/lwip-port-
1.4.1/sam/include/arch/cc.h file provides a compiler abstraction level.
IwlP also implements one other abstraction level for using RTOS services when using the Netconn or Socket APIs. This
abstraction layer is implemented in the thirdparty/lwip/lwip-port-1.4.1/sam/sys_arch.c file. Current implementation only
supports FreeRTOS™.
4.2 GMAC Network Interface
The GMAC driver associates a set of functions to drive the GMAC hardware and to manage the Ethernet physical layer
(PHY).
The source files are located as following:
e sam/drivers/gmac: contains functions to drive the GMAC peripheral and includes generic PHY routines
e sam/components/ethernet_phy/ksz8051mnl: adds support to the Micrel PHY used on the SAM4E-EK
e thirdparty/lwip/lwip-port-1.4.1/sam/netif: implements IwlP interface and GMAC driver logic
Note: The conf_eth.h file is used to configure the GMAC driver (number of RX/TX buffers, IP settings and PHY mode).
421 DMA Programming
The GMAC IP can send or receive Ethernet frames by performing Direct Memory Access from memory (typically
SRAM) to internal FIFO. Setting up the DMA transfer requires using two sets of buffer descriptors and configuring the
Buffer Queue Pointer; one for data receive and one for data transmit. One buffer descriptor being a pointer to the actual
send/receive buffer and a 32-bit word for status or control.
Figure 4-1 illustrates the GMAC DMA configuration.
/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 14

42233A-SAM-03/2014

Figure 4-1. GMAC DMA Descriptor List and Buffers

Buffer Queue Pointer Buffer Address - Buffer 0
(GMAC Register) * Status/Control
Buffer Address » Buffer 1
Status/Control
Buffer Address . Buffer ™
Status/Control (In memory)

Buffer Descriptor List
(In memory)

Note that the SAM4E AHB bus matrix does not allow transfer from flash to GMAC DMA.

The GMAC receive /transmit descriptor lists and buffers are implemented in the gmac_device structure
(thirdparty/lwip/lwip-port-1.4.1/sam/netif/sam4e_gmac.c) as following:

/** Pointer to Rx descriptor list (must be 8-byte aligned) */
gmac_rx_descriptor_t rx_desc[GMAC_RX_BUFFERS];
/** Pointer to Tx descriptor list (must be 8-byte aligned) */
gmac_tx_descriptor_t tx_desc[GMAC_TX_BUFFERS];
/** RX pbuf pointer list */

struct pbuf *rx_pbuf[GMAC_RX_BUFFERS];

/** TX pbuf pointer list */

struct pbuf *tx_pbuf[GMAC_TX_BUFFERS];

The number of receive /transmit descriptors and buffers can be changed in file conf_eth.h by setting the
GMAC_RX_BUFFERS/ GMAC_TX_BUFFERS values.

RX DMA buffers are pointers to pbuf structures allowing zero-copy transfers between the GMAC network interface and
the IwlP network stack.

4.2.2 Receive Buffers

Zero-copy RX buffers can improve system performances over copied buffers when transferring large amounts of data. It
also uses less memory as it can directly use pbufs allocated by the IwIP network stack; hence simplifying the memory
configuration.

To enable packet reception, pbufs are pre-allocated during the GMAC network interface initialization stage. The GMAC
DMA receive buffer size is fixed to 1536 bytes; meaning that one receive buffer will handle exactly one TCP packet.

/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 15

42233A-SAM-03/2014

4.2.3

Altmel

When a packet is received, the GMAC IP will place the received data into the pbuf’s payload area. Then the network
interface driver removes this pbuf from its descriptor and passes it to the IwIP network stack without an extra copy. The
network interface does not keep track this pbuf as the IwIP network stack will free this resource once the data has been
consumed by the user application. Finally, a new pbuf is allocated for the previous buffer descriptor which is now
updated and ready to use.

Figure 4-2. Zero-copy Receive Descriptor List and Buffers

pbuf :|

When packet is recefved

Buffer Addr
& ess pbuf can be passed to application

Status/Control

Buffer Address pbuf
Status/Control

Buffer Address pbuf
Status/Control (In memory)

Receive Buffer Descriptor List
(In memory)

Beware that the amount of memory used by receive (pbuf) buffers is constant and equals to GMAC_RX_BUFFERS *
PBUF_POOL_BUFSIZE. The IwlP total memory size MEM_SIZE must be set accordingly.

Transmit Buffers
TX buffers are statically pre allocated with the maximum packet size in the GMAC network interface driver. The pbuf
chain passed from the network layer is fully copied into a TX buffer before sending.

Transmit descriptors should remain free most of the time. Hence, GMAC_TX_BUFFERS can be defined low to reduce
IwIP memory requirements.

Figure 4-3. Transmit Descriptor List and Buffers

Buffer Address X buffer :| Packet is copied from pbuf chain
Status/Control

Buffer Address tx buffer

Status/Control

Buffer Address tx buffer

Status/Control (Tn memory)

Transmit Buffer Descriptor List
{In memory)

AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 16

42233A-SAM-03/2014

5. IwlP Demo Applications

5.1 Basic HTTP Server using the Raw API

This demo is a basic HTTP server implementation that can serve one request at a time. The project file for IAR is

located in the thirdparty/lwip/lwip-1.4.1/raw_http_basic_example/sam4e16e_sam4e_ek/iar folder.

The HTTP server home page can be accessed using any browser at http://192.168.0.100.

Figure 5-1. Home Page of the Raw HTTP Basic Example

SIES IwIP - A Lightweight TCP/IP Stack

The web page vou are watching was served by a simple web server running on top

of the lightweight TCP/TP stack [wIP.

IwIP is an open source implementation of the TCP/IP protocol suite that was
originally written by Adam Dunkels of the Swedish Institute of Computer Science
but now is being actively developed by a team of developers distributed
wotld-wide. Since it's release, IwIP has spurred a lot of interest and has been
ported to several platforms and operating svstems. IwIP can be used either with or
without an undetlving OS

The focus of the IwIP TCP/IP implementation is to reduce the EAM usage while
still having a full scale TCP. This makes IwIP suitable for use in embedded svstems
with tens of kilobvtes of free EAM and room for around 40 kilobvtes of code
ROM.

More information about IwIP can be found at the IwIP homepage at
http:wrwwsics.se/~adam Twip/ .

5.1.1 Code Overview

The main function (located in the thirdparty/lwip/lwip-1.4.1/raw_http_basic_example/ raw_http_basic_example.c file)

performs the following initialization steps:

Altmel

Configure system clock and pins
Configure the UART console

Initialize the IwIP network stack
Initialize the HTTP server socket
Update the Ethernet task in a while loop

AT04055: Using the IwIP Network Stack [APPLICATION NOTE]

42233A-SAM-03/2014

17

http://192.168.0.100/�

int main(void)
{
/* Initialize the SAM system. */
sysclk_init();
board_init();
/* Configure debug UART */
configure_console();
/* Print example information. */
puts(STRING_HEADER);
/* Bring up the ethernet interface & initialize timer®, channel@. */
init_ethernet();
/* Bring up the web server. */
httpd_init();
/* Program main loop. */
while (1) {
/* Check for input packet and process it. */
ethernet_task();
}
}

The IwlP network stack initialization is done in the init_ethernet function (located in the thirdparty/Iwip/Iwip-
1.4.1/raw_http_basic_example/ network/ethernet.c file). It performs the following steps:

e |Initialize the IwIP network stack to operate in Raw API mode (non RTOS)
e Configure the network interface driver
e Configure a 1ms timer counter (TC) to handle the IwIP timers

void init_ethernet(void)
{
/* Initialize 1wIP. */
lwip_init();
/* Set hw and IP parameters, initialize MAC too. */
ethernet_configure_interface();
/* Initialize timer. */
sys_init_timing();
}

The ethernet_configure_interface() function (located in the thirdparty/lwip/lwip-1.4.1/raw_http_basic_example/
network/ethernet.c file) is detailed below:

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 18

42233A-SAM-03/2014

static void ethernet_configure_interface(void)

{

/* Add data to netif */
if (NULL == netif_add(&gs_net_if, &x_ip_addr, &x_net_mask, &x_gateway, NULL,
ethernetif _init, ethernet_input)) {
LWIP_ASSERT("NULL == netif_add", 0);
}
/* Make it the default interface */
netif_set_default(&gs_net_if);

/* Setup callback function for netif status change */
netif_set_status_callback(&gs _net_if, status_callback);

/* Bring it up */

#if defined(DHCP_USED)

/* DHCP mode. */

if (ERR_OK != dhcp_start(&gs_net_if)) {
LWIP_ASSERT("ERR_OK != dhcp_start"”, 0);

}
printf("DHCP Started\n");
Helse
/* Static mode. */
netif_set up(&gs_net_if);
printf("Static IP Address Assigned\n");
#tendif
}

If the DHCP_USED macro is defined in the IwlP configuration file, a DHCP client is started to fetch an IP address, else
the static IP address defined in the thirdparty/lwip/raw_http_basic_example /sam4e16e_samde_ek/conf_eth.h file is
used.

A pointer to a status_callback function is used to print the device IP address on the UART console once IwIP
configuration is done.

The actual HTTP server initialization is made from the main() function by calling the httpd_init() function. This function
instanciates a new TCP PCB and listen for incoming connection of the HTTP port 80. The tcp_accept() function is used
to define a callback to the http_accept() function once an incoming connection is detected on port 80.

void httpd_init(void)

{
struct tcp_pcb *pcb;
pcb = tcp_new();
tcp_bind(pcb, IP_ADDR_ANY, 89);
pcb = tcp_listen(pcb);
tcp_accept(pcb, http_accept);

}

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 19
42233A-SAM-03/2014

The following http_accept() function is called from the IwIP network state to initialize the state of the connection. It is
mainly used to allocate a user data structure and register callbacks for the desired events:

e tcp_recv: to wait for data to become available on the socket
e tcp_err: to free the user data structure when the connection is lost

e tcp_pool: to pool the connection at the specified time interval when the connection is idle (not receiving or
sending). It is here used both as a watchdog timer for killing the connection if it has stayed idle for a too long
(retries condition), and as a method for waiting memory to become available. For instance, if a call to
tcp_write() has failed because memory wasn't available, the tcp_pool callback will try to perform another
tcp_write() call (via the http_send_data() function).

static err_t http_accept(void *arg, struct tcp_pcb *pcb, err_t err)
{
struct http_state *hs;
tcp_setprio(pcb, TCP_PRIO_MIN);
/* Allocate memory for the structure that holds the state of the
connection. */
hs = (struct http_state *)mem_malloc(sizeof(struct http_state));
if (hs == NULL) {
return ERR_MEM;
¥
/* Initialize the structure. */
hs->file = NULL;
hs->left = 0;
hs->retries = 0;
/* Tell TCP that this is the structure we wish to be passed for our
callbacks. */
tcp_arg(pcb, hs);
/* Tell TCP that we wish to be informed of incoming data by a call
to the http_recv() function. */
tcp_recv(pcb, http _recv);
tcp_err(pcb, http_conn_err);
tcp_poll(pcb, http poll, 4);
return ERR_OK;
¥

Once the http_accept() callback has been performed; the socket will trigger the http_recv callback as soon as data has
arrived.

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 20

42233A-SAM-03/2014

The http_recv() function checks for a valid data packet, then it calls the tcp_recved() function to let the IwIP network
stack to know that data has been received and that an acknowledge should be sent. Then, if the pbuf contains the GET
command, the user data structure is filled with a pointer to the index.html data and the transfert begins with an
http_send_data() call.

static err_t http_recv(void *arg, struct tcp_pcb *pcb, struct pbuf *p, err_t err)

{
hs = arg;

if (err == ERR_OK && p != NULL) {
/* Inform TCP that we have taken the data. */
tcp_recved(pcb, p->tot_len);

if (hs->file == NULL) {
data = p->payload;

if (strncmp(data, "GET ", 4) == 0) {

if (*(char *)(data + 4) == '/' &&
*(char *)(data + 5) == 0) {
fs_open("/index.html", &file);

}

hs->file = file.data;
hs->left = file.len;
pbuf_free(p);
http_send_data(pcb, hs);

/* Tell TCP that we wish be to informed of data that has been
successfully sent by a call to the http_sent() function. */
tcp_sent(pcb, http_sent);

} else {

}
if (err == ERR_OK && p == NULL) {
http_close conn(pcb, hs);

}
return ERR_OK;

Note: The tcp_sent() function is used to register the http_sent callback once data has been successfully sent.

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 21

42233A-SAM-03/2014

Altmel

static void http_send_data(struct tcp_pcb *pcb, struct http_state *hs)
{
err_t err;
u32_t len;

/* We cannot send more data than space available in the send buffer. */
if (tcp_sndbuf(pcb) < hs->left) {

len = tcp_sndbuf(pcb);
} else {

len = hs->left;

do {
/* Use copy flag to avoid using flash as a DMA source (forbidden). */
err = tcp_write(pcb, hs->file, len, TCP_WRITE_FLAG_COPY);
if (err == ERR_MEM) {
len /= 2;
}
} while (err == ERR_MEM && len > 1);

if (err == ERR_OK) {
hs->file += len;
hs->left -= len;

The http_send_data() function is used to send data via the socket connection. Since the amount of data to send can be

very important, this function attempts to fill TCP send buffer. The user data structure is then updated to save the

remaining amount of data to be transmitted.

When the packet is successfully transmitted, the previously registered http_sent() callback function is called, which in

turns call the http_send_data() function as long as data is waiting to be transmitted.

ATO04055: Using the IwIP Network Stack [APPLICATION NOTE]

42233A-SAM-03/2014

22

static err_t http_sent(void *arg, struct tcp_pcb *pcb, ul6_t len)
{

struct http_state *hs;

LWIP_UNUSED_ARG(len);

hs = arg;

hs->retries = 0;

if (hs->left > 0) {
http_send_data(pcb, hs);

} else {
http_close_conn(pcb, hs);

return ERR_OK;

When the complete data has been sent, the http_close_conn() properly closes the connection to the remote host.

5.1.2 Memory Footprint

The memory footprint information in Table 5-1 has been obtained using IAR 6.50.5 compiler with high optimization for
size.

Table 5-1. HTTP Raw Basic Example Memory Footprint

Flash (bytes) SRAM (bytes)
RO data RW data
0

GMAC+PHY driver 1804 4628
IwlP stack 16154 46 11443
SAMAE other drivers 1336 252 20

User application 1580 3300 96

Total 20874 3598 16187
Others (libc, stack, etc) 5960 40 1028
Grand Total 26834 3638 17215

The following memory configuration was used for the IwIP network stack:
e 3 TX buffers of 1536 bytes for the GMAC driver (conf_eth.h)
e 4 buffers of 1536 bytes for the IwIP buffer pool (lwipopts.h)
e 4K for the IwIP heap memory (lwipopts.h)

Note that this memory footprint information is not optimal and can be reduced depending on your requirements.

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 23

42233A-SAM-03/2014

5.2 HTTP Stats Server using the Netconn API

This demo is FreeRTOS based and demonstrates how to develop an HTTP server that can serve several requests at
the same time using the IwIP Netconn API. The server homepage provides several system informations like FreeRTOS
thread usage, IwlP memory status and GMAC transfer rate in real time.

The project file for IAR is located in the thirdparty/lwip/lwip-1.4.1/netconn_http_stats_example/sam4e16e_sam4e_ek/iar
folder.

The example home page can be accessed using any browser at http://192.168.0.100 (in fixed IP mode).

Figure 5-2. Home Page of the Netconn HTTP Stats Example

———— LwIP HTTP netconn example
[ERTOS i
“._.__EEO_Z__ l System and network monitor
Hardware Info: FreeRTOS thread usage:
CPU Core: corex-m4 HTTP-req PeLA
Chip name: SAM4E Series DLE 0%
SRAM size: 128K bytes - o
Flash size: 1024K bytes GFX 1%
HTTP <1%
Connections Info: GMAC 1%
Board IP: 192.165.0.100 tepip th .
Your IF: 192.168.0.1 Lpip_thr B
Total status requests: 27
LwiP stats:
HEAP Cur:0 Size: 14336 Max:14160 Emr0 Usage:0%
UDP_PCB Cur0 Size 4 Max0 Err0 Usage 0%
TCP_PCB Cur16 Size:16 Max:16 Err0 Usage:100%
TCP_PCB_LISTEN Cur:1 Size:1 a1 Err0 Usage:100%
TCP_SEG Cur:0 Size16 Max:12 Err0 Usage:0%
REASSDATA Cur0 Size:5 Max:0 Err0 Usage:0%
FRAG_PBUF Cur0 Size:15 Max:0 Err0 Usage:0%
NETBUF Cur1 Size 8 Max:3 Err0 Usage:13%
NETCONN Cur2 Size:16 Max:6 Err0 Usage:13%
TCPIP_MSG_API Cur0 Size:8 Max:0 Err0 Usage:0%
TCPIP_MSG_INPKT Cur0 Size:8 Max:3 Err0 Usage:0%
SYS_TIMEOUT Cur:s Size:5 Ma:5 Ermr0 Usage:100%
PBUF_REF/ROM Cur0 Size:10 Max:0 Err0 Usage:0%
PBUF_POOL Cur4 Size:10 Max:§ Err0 Usage:40%
Transfer rate on ethernet MAC:
5000000
Download (Biz)
Upload (B/s)
4000000
3000000
2000000
1000000
0
250 255 250 265 270
/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 24

42233A-SAM-03/2014

http://192.168.0.100/�

5.2.1 Code Overview

As this demo is based on the Netconn API, the first step is to define the main tasks and to start the FreeRTOS
scheduler. The following code is an extract of the thirdparty/lwip/netconn_http_stats_example/main.c file:

void main(void)
{
/* Prepare the hardware to run this demo. */
prvSetupHardware();
/** Create GFX task. */
create_gfx_task(mainGFX_TASK_STACK_SIZE, mainGFX_TASK_PRIORITY);
/** Create WebServer task. */
create_http task(mainHTTP_TASK STACK SIZE, mainHTTP_TASK PRIORITY);
/** Start the RTOS scheduler. */
vTaskStartScheduler();
}

The prvSetupHardware() function initializes the system clock to work at the maximum operating frequency, then it
configures the required PIOs. Finally two tasks are created:
e GFX task performs the actual IwlP initialization based on user touchscreen input for IP address setting (fixed

or DHCP). When init is complete, the assigned IP address is displayed and a blinking message let the user
know that the device is ready to serve HTTP requests

e HTTP task waits for the GFX task for the user IP address input setting, then starts listening on the TCP port 80
(HTTP)

Priorities and stack sizes are defined in the thirdparty/lwip/netconn_http_stats_example/task.h file as following:

#define mainGFX_TASK_PRIORITY (tskIDLE_PRIORITY + 1)
#define mainHTTP_TASK_PRIORITY (tskIDLE_PRIORITY + 2)

The GFX task performs the ILI9325 touchscreen initialization then displays the IP address setting menu. The global
variable g_ip_mode is updated depending on the user input (to select fixed IP address or DHCP mode) and the IwIP
initialization is started calling the init_ethernet() function. This function is located in the
thirdparty/lwip/netconn_http_stats_example/network/ethernet.c file.

void init_ethernet(void)
{
/* Initialize 1wIP. */
/* Call tcpip_init for threaded 1wIP mode. */
tcpip_init(NULL, NULL);
/* Set hw and IP parameters, initialize MAC too */
ethernet_configure_interface();
}
/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 25

42233A-SAM-03/2014

The tcpip_init() performs the actual initialization of the IwIP network stack in threaded mode; meaning that the IwIP
threads are completely handled by the stack. The NULL parameters could be replaced with a function callback and
arguments to know when the tcpip-thread (core IwlP thread) is up and running.

The ethernet_configure_interface() function is detailed below:

static void ethernet_configure_interface(void)

{

/* Add data to netif */

/* Use ethernet_input as input method for standalone 1wIP mode. */

/* Use tcpip_input as input method for threaded 1lwIP mode. */

If (NULL == netif_add(&gs_net_if, &x_ip_addr, &x_net_mask, &x_gateway, NULL,
ethernetif_init, tcpip_input)) {

/* Make it the default interface */
netif_set_default(&gs_net_if);

/* Setup callback function for netif status change */
netif set status _callback(&gs net if, status_callback);

/* Bring it up */
if (g_ip_mode == 2) {
/* DHCP mode. */
if (ERR_OK != dhcp_start(&gs_net_if)) {

}

else {
/* Static mode. */
netif_set up(&gs_net_if);

}

Depending on the global variable g_ip_mode (user IP preference); dhcp is started or a static IP address (defined in the
thirdparty/lwip/netconn_http_stats_example/sam4e16e_sam4e_ek/conf_eth.h file) is used.

A pointer to a status_callback() function is used to notify the GFX task that the IwIP configuration is done and a valid IP
address can be displayed on screen.

The HTTP thread is in charge of serving HTTP requests. The main function of this task is defined in the
thirdparty/lwip/netconn_http_stats_example/task_http.c file:

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 26

42233A-SAM-03/2014

static void http_task(void *pvParameters)

{

/** Wait for user to read instructions. */
WAIT_FOR_TOUCH_EVENT;

/* Create a new TCP connection handle */
conn = netconn_new(NETCONN_TCP);

/* Bind to port 80 (HTTP) with default IP address */
netconn_bind(conn, NULL, 80);

/* Put the connection into LISTEN state */
netconn_listen(conn);

do {

err = netconn_accept(conn, &newconn);

if (err == ERR_OK) {

/* Try to instanciate a new HTTP-req task to handle the HTTP request. */

if (NULL == sys_thread_new("HTTP-req", http_request, newconn,
mainHTTP_TASK_STACK_SIZE, mainHTTP_TASK_PRIORITY)) {

/* Failed to instanciate task, free netconn socket. */
netconn_close(newconn);
netconn_delete(newconn);

}
} while (err == ERR_OK);

/* Free netconn socket. */
netconn_close(conn);
netconn_delete(conn);

/* Delete the calling task. */
vTaskDelete(NULL);

}

The HTTP thread performs the following tasks:

e Wait for IP configuration and IwlP initialization

e Create a TCP socket using the Netconn APl (NETCONN_TCP parameter)

e Bind the socket to TCP port 80 (HTTP)

e Put the socket into LISTEN state

e Accept input connections and instanciate one HTTP-req thread to handle the request

e |n case of errors; close and delete the Netconn socket
By instanciating one HTTP-req thread per request; the main HTTP thread is always available to accept new requests,
hence several HTTP clients can connect to the server at the same time.

HTTP-req threads are instanciated and use the http_request() function as the thread main function (source file is
located in thirdparty/lwip/netconn_http_stats_example/network/httpserver/httpd.c).

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 27

42233A-SAM-03/2014

void http_request(void *pvParameters)

{

/* Read the data from the port, blocking if nothing yet there. */
/* We assume the request is in one netbuf. */
if (ERR_OK == netconn_recv(conn, &inbuf)) {
/* Read data from netbuf to the provided buffer. */
netbuf_data(inbuf, (void**)&buf, &buflen);

memset(req_string, 0, sizeof(req_string));
http_getPageName(buf, buflen, req_string, sizeof(req_string));

[* Try to get a CGI handler for the request. */
cgi = cgi_search(req_string, cgi_table);
if (cgi) {

/* Answer CGI request. */

if (cgi(conn, req_string, buf, buflen) < 0) {

1
/* Normal HTTP page request. */

else {
if (fs_open(req_string, &file) == 0) {

}

else {
/* Send the HTML header for file type. */
int type = http_searchContentType(req_string);
http_sendOk(conn, type);

netconn_write(conn, file.data, file.len, NETCONN_COPY);

/* Close the connection (server closes in HTTP). */
netconn_close(conn);

/* Delete the buffer (netconn_recv gives us ownership, */
/* so we have to make sure to deallocate the buffer). */
netbuf_delete(inbuf);

/* Free resource. */
netconn_delete(conn);

/* Delete the calling task. */
vTaskDelete(NULL);

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 28

42233A-SAM-03/2014

5.2.2

Altmel

The HTTP-req thread performs the following tasks:

e Read the data containing the HTTP request from the netconn socket to a netbuf structure

e Extract the actual request from the netbuf structure
e Handle CGI requests using helper functions

e Write to the netconn socket using netconn_write() function calls to answer the request

e Close the connection
e Free netbuf and netconn socket resources
e Free FreeRTOS resource by deleting the current HTTP-req task

Memory Footprint

The memory footprint information in Table 5-2 has been obtained using IAR 6.50.5 compiler with high optimization for

size.

Table 5-2. HTTP Netconn Example Memory Footprint

Flash (bytes) SRAM (bytes)

m RO data
0

GMAC+PHY driver 2180

IwlP stack 27980 30
FreeRTOS 1768 9
SAMA4E other drivers 6094 250
User application 7416 430639
Total 45440 430928
Others (libc, stack, etc) 6400 50
Grand Total 51840 430978

The following memory configuration was used for the IwIP network stack:
e 3 TX buffers of 1536 bytes for the GMAC driver (conf_eth.h)
e 10 buffers of 1536 bytes for the IwIP buffer pool (Iwipopts.h)
e 14K for the IwIP heap memory (lwipopts.h)

The following memory configuration was used for FreeRTOS:

e 20K for the FreeRTOS heap memory (FreeRTOSConfig.h)

RW data
4648
35711
20564
1172
2080
64175
1024
65199

Note that this memory footprint information is not optimal and can be reduced depending on your requirements.

ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 29

42233A-SAM-03/2014

6. Debugging with IwIP

The IwlP network stack integrates some nice support for enabling various debug print options. The debug configuration
is done in the debug section at the end of the Iwipopts.h file.

Here are the recommanded steps to enable debug output:

Define LWIP_DEBUG to enable print output

It simply redirects LWIP_PLATFORM_ASSERT and LWIP_PLATFORM_DIAG to printf() function (as defined in
the thirdparty/lwip/lwip-port-1.4.1/sam/include/arch/cc.h file).

Define LWIP_DBG_MIN_LEVEL to the desired level of debug output

The possible values are listed in the thirdparty/lwip/lwip-1.4.1/src/include/lwip/debug.h file.

Define LWIP_DBG_TYPES_ON to LWIP_DBG_ON to enable the use of various xxx_DEBUG options
This define is actually used as a quicker way to disable LWIP_DEBUGF messages all at once.
Define any desired xxx_DEBUG option to LWIP_DBG _ON to enable the corresponding debug output
Simply define to LWIP_DBG _OFF to turn the corresponding xxx_DEBUG option off.

Comment the LWIP_NOASSERT define to enable assertion tests
Assert will only loop without printing a message if LWIP_DEBUG is undefined.

The following configuration can be used to print debug messages from the network interface driver:

#define LWIP_DEBUG 1
#define LWIP_DBG_MIN_LEVEL LWIP_DBG_LEVEL ALL
#define LWIP_DBG_TYPES_ ON LWIP_DBG_ON
#define NETIF_DEBUG LWIP_DBG_ON

Note: Your terminal must be configured to treat LF characters as new-line to properly print debug messages.

/ItmeL ATO04055: Using the IwIP Network Stack [APPLICATION NOTE] 30

42233A-SAM-03/2014

7. Optimizing the SRAM Footprint
71 Heap Memory
The IwlP heap memory is defined in the thirdparty/lwip/lwip -1.4.1/src/core/mem.c file as a byte array called "ram_heap”
with a size of MEM_SIZE. The heap memory is used for dynamic memory allocation. When the user application sends
data to a remote host, the network stack has to build the corresponding Ethernet frame meaning that a TCP header, an
IP header and an Ethernet header will be allocated and prepended to the pbuf chain. Depending on the amount of data
to send, the send buffer size and the send queue length configuration, the heap memory size MEM_SIZE can be hard
to adjust.
The IwlP network stack provides two different approaches to find heap memory allocation failures at runtime:
e By using the memory debug messages. Set the following defines in the IwIP configuration file:
#define LWIP_DEBUG 1
#define MEM_DEBUG LWIP_DBG_ON
Then run the application; perform network operations (http page request etc). Memory allocation failures will be
directly printed on the UART console.
e By using the IwlP stats system. Set the following defines in the IwIP configuration file:
#define LWIP_STATS 1
#define MEM_STATS LWIP_DBG_ON
#define MEMP_STATS 1
#define MEM_DEBUG LWIP_DBG_ON
Then run the application; perform network operations (http page request etc), break the program and watch the
“Iwip_stats” array in the thirdparty/lwip/lwip -1.4.1/src/core/lwip/stats.c file. The inner mem structure represents
the heap memory; if error count is superior to zero, some malloc calls have failed.
Memory heap allocation errors are not necessarily critical if handled properly by the user application. However, memory
heap allocation errors usually have a bad influence in terms of network latency and throughput.
7.2 Memory Pools
The IwlP network stack uses memory pools to fasten the memory allocation process. The various pools are defined in
the thirdparty/lwip/lwip -1.4.1/src/include/lwip/memp_std.h file and each pool size can be configured in the lwipopts.h
file.
The best approach to properly adjust a pool size is by enabling the stats system in the IwIP configuration file:
#define LWIP_STATS 1
#define MEMP_STATS 1
Also enable the debug output to read the pool name field:
#define LWIP_DEBUG 1
#define LWIP_DBG_MIN_LEVEL LWIP_DBG_LEVEL_ALL
#define LWIP_DBG_TYPES_ON LWIP_DBG_ON
#define MEMP_DEBUG LWIP_DBG_ON
/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 31
42233A-SAM-03/2014

Then run the application; perform network operations (http page request etc) and stop the debugger. Watch the
“Iwip_stats” array: the “memp” element (array) contains all the memory pools information. Each pool is listing with the
following fields:

e name: the name of the pool

e avail: the number of currently free elements in the pool

e used: the number of currently used elements in the pool

e max: the highest number of used elements in the pool since startup time

e err: the number of allocation error (out of memory) in the pool

The size of each element in a pool can be seen at runtime by watching the “memp_sizes” array.

The best approach to optimize the memory pool footprint is to adjust the various pool configuration values in the IwIP
configuration file so that the max field equals the avail field. Unused pools can also be disabled in this configuration file.

7.3 Stack Size
If no RTOS is used:
In IAR the stack is defined by the CSTACK section. It appears like this in the map file:
CSTACK uninit 0x20003f48 0x100 <Block tail>
- 0x20004048 0x100

Note: The stack is configured to grow up.

Optimizing the stack size is possible by choosing the lowest possible stack size without risking a stack overflow. To find
the best value, place a breakpoint at the beginning of the main function. Run the program to the breakpoint. Open the
memory view, go the CSTACK block tail, and write a memory pattern (like OXDEADBEEF) until the stack start address.
Release the application from the breakpoint, fully test the program features, stop the program and inspect memory view
at CSTACK block tail address. If the memory pattern is still widely present, the stack size can be safely decreased.
However, if the memory pattern is gone, the stack size is too short and must be increased. It is recommended to keep a
security margin in the stack size to handle any situation.

If RTOS is used:
Refer to the RTOS manual for stack debugging.

/ItmeL AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 32

42233A-SAM-03/2014

8. Revision History

Doc. Rev. Date Comments
42233A 03/2014 Initial document release

/Itmel AT04055: Using the IwIP Network Stack [APPLICATION NOTE] 33

42233A-SAM-03/2014

Atmel | Enabling Unlimited Possibilities’

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K.

1600 Technology Drive Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Building
San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku
USA 418 Kwun Tong Road D-85748 Garching b. Munich Tokyo 141-0032

Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81)(3) 6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81)(3) 6417-0370

Fax: (+852) 2722-1369

© 2014 Atmel Corporation. All rights reserved. / Rev.: 42233A-SAM-03/2014

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. LwIP Stack Overview
	1.1 Presentation
	1.2 Folder Structure

	2. lwIP TCP API
	2.1 Raw API
	2.2 Netconn API
	2.3 BSD Socket API

	3. lwIP Memory Management
	3.1 Pbuf Structure
	3.2 Pbuf API

	4. Developing a Network Interface for lwIP
	4.1 Abstraction Layers
	4.2 GMAC Network Interface
	4.2.1 DMA Programming
	4.2.2 Receive Buffers
	4.2.3 Transmit Buffers

	5. lwIP Demo Applications
	5.1 Basic HTTP Server using the Raw API
	5.1.1 Code Overview
	5.1.2 Memory Footprint

	5.2 HTTP Stats Server using the Netconn API
	5.2.1 Code Overview
	5.2.2 Memory Footprint

	6. Debugging with lwIP
	7. Optimizing the SRAM Footprint
	7.1 Heap Memory
	7.2 Memory Pools
	7.3 Stack Size

	8. Revision History

