
Default Disambiguation for Online Parsers
Lukas Diekmann

Software Development Team
King’s College London

United Kingdom

Laurence Tratt
Software Development Team

King’s College London
United Kingdom

Abstract
Since composed grammars are often ambiguous, grammar
composition requires a mechanism for dealing with ambigu-
ity: either ruling it out by using delimiters (which are awk-
ward to work with), or by using disambiguation operators
to filter a parse forest down to a single parse tree (where, in
general, we cannot be sure that we have covered all possible
parse forests). In this paper, we show that default disambigua-
tion, which is inappropriate for batch parsing, works well
for online parsing, where it can be overridden by the user
if necessary. We extend language boxes – a delimiter-based
algorithm atop incremental parsing – in such a way that
default disambiguation can automatically insert, remove, or
resize, language boxes, leading to the automatic language
boxes algorithm. The nature of the problem means that de-
fault disambiguation cannot always match a user’s intention.
However, our experimental evaluation shows that automatic
language boxes behave acceptably in 96.8% of tests involving
compositions of real-world programming languages.

ACM Reference Format:
Lukas Diekmann and Laurence Tratt. 2019. Default Disambigua-
tion for Online Parsers. In Proceedings of the 12th ACM SIGPLAN
International Conference on Software Language Engineering (SLE
’19), October 20–22, 2019, Athens, Greece. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3357766.3359530

1 Introduction
Language composition – the ability to build larger languages
out of multiple small languages – offers an enticing solution
to problems such as the development of domain-specific lan-
guages or the migration of legacy software. Unfortunately,

Authors’ URLs: L. Diekmann https://lukasdiekmann.com/, L. Tratt https:
//tratt.net/laurie/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’19, October 20–22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6981-7/19/10. . . $15.00
https://doi.org/10.1145/3357766.3359530

writing and editing composed programs is often cumber-
some. Arguably the major cause of this is due to ambigu-
ity when parsing: language composition is underpinned by
grammar composition; composing even two provably un-
ambiguous grammars can lead to an ambiguous grammar;
and determining whether a grammar is unambiguous or not
is undecidable [Cantor 1962]. There are two fundamental
approaches to dealing with such ambiguity: either ruling
it out through the use of delimiters (via explicit bracketing
or syntax-directed editing); or using a generalised parsing
algorithm that can create a parse forest, capturing all ambi-
guities (e.g. [Visser et al. 1997]). Each has different trade-offs:
delimiters are visually intrusive and/or awkward to work
with; and one can never know if enough disambiguation
operators have been used to filter all possible parse forests
down to a single parse tree.

In this paper we show that default disambiguation – i.e. a
disambiguation strategy applied equally to every language
composition – provides a satisfying new point in the design
space. This may seem surprising, since default disambigua-
tion is clearly inappropriate for batch parsing, where a single
incorrect disambiguation will cause dire results. The reali-
sation underlying this paper is that this is not an issue for
online parsers, since users can manually override incorrect
disambiguations. However, this introduces a new challenge:
default disambiguation must mostly match the users inten-
tions, because if they have to override it too often then the
system will be perceived as unusable.
In this paper we use language boxes as the basis of a de-

fault disambiguation system. Language boxes aim to com-
bine the advantages of explicit bracketing and syntax-based
editing [Diekmann and Tratt 2014]. Editors which support
language boxes need to use incremental parsing (we assume
use of the Wagner [1998] algorithm): unlike traditional ed-
itors, users do not directly edit a contiguous block of text
in memory, but instead indirectly edit a parse tree, which is
continuously updated as they type. A language box is then
simply a node in the parse tree that represents a different
language, surrounded by explicit, but invisible, delimiters.
Unlike explicit bracketing approaches, there are no visually
intrusive delimiters; unlike traditional syntax-based editors,
the program can be syntactically incorrect in arbitrary ways
and places during editing. Language boxes have the virtue
that they work for any possible language composition. How-
ever, this generality comes at a cost: users must explicitly,

https://doi.org/10.1145/3357766.3359530
https://lukasdiekmann.com/
https://tratt.net/laurie/
https://tratt.net/laurie/
https://doi.org/10.1145/3357766.3359530


SLE ’19, October 20–22, 2019, Athens, Greece Lukas Diekmann and Laurence Tratt

(a) (b) (c)

(d) (e)

Figure 1. An example of default disambiguation in action, with elided screenshots from our implementation of the automatic
language boxes algorithm within the Eco editor. Here, the user is entering text in a composition of Java and SQL, where SQL
statements can be used wherever Java expressions are valid. As the user types, language boxes (with a pink background)
are automatically inserted, removed, or resized. (a) After typing the skeleton of a Java function, the user begins typing an
SQL statement as the right-hand side expression of a Java assignment. The most fundamental part of the algorithm is to try
inserting language boxes when a syntax error in the outer language occurs (as can be seen at the min function) but not if it
then leads to a syntax error immediately after the inserted language box. It is thus too early to insert an automatic language
box around the SQL as it would cause a syntax error in the first non-whitespace token afterwards (‘}’). (b) After typing ‘,’ an
SQL language box is automatically inserted since the first non-whitespace Java token (‘,’) is now syntactically valid. (c) The
user continues typing a (now incomplete) SQL statement. This causes syntax errors in the outer language which cannot yet be
resolved by inserting, removing, or resizing any language boxes. (d) After typing ‘;’, the automatic language box algorithm
resizes the existing language box to encompass the entire SQL statement, making the program syntactically complete. (e)
Further syntactically correct Java input does not cause the language box to be altered.

and tediously, state when they want to insert or remove
language boxes.
We thus created default disambiguation rules which can

automatically insert, remove, and resize language boxes in
many useful cases — leading to the automatic language boxes
algorithm. Given several languages in a composition, auto-
matic language boxes find a non-strict subset of the possi-
ble ambiguous parses: in many cases, only one possibility
remains, and language boxes are inserted or updated as ap-
propriate. The algorithm is comprised of several stages /
heuristics: determining what user inputs should trigger it;
finding candidate language boxes to insert, remove, or resize;
filtering out those which would make the overall program
worse; and then applying the remaining candidates. Figure 1
shows a simple example and walks readers through the high-
level parts of the algorithm and accompanying heuristics.
We implemented automatic language boxes as an exten-

sion to the Eco editor [Diekmann and Tratt 2014]. In order to
validate automatic language boxes, we created 12 language
compositions involving large, real-world languages (Java,
Lua, PHP, and SQL), and composed programs in those com-
positions by extracting fragments from real-world programs.
In essence, our experiment is equivalent to opening a file
in the outer language, moving the cursor to a given posi-
tion, deleting a fixed amount of text, and then inserting text
one character at a time from the inner language. We then
group the possible outcomes of such actions into two overall
categories: ‘acceptable’ (roughly speaking: a language box
was inserted without causing an error; or no language box
was inserted because the fragment is also valid in the outer
language) and ‘unacceptable’ (a language box was inserted

but caused an error elsewhere in the file; or no language
box was inserted despite the fragment being invalid in the
outer language). Across the 5,100 tests we ran, 96.8% are
classified as acceptable, with the majority (65.8% of the total)
leading to a language box being inserted around the entire
fragment, and most of the rest (25.3% of the total) being in-
stances of the fragment being valid in both the outer and
inner languages. We believe that this data shows that default
disambiguation is a practical means for editing composed
programs. Our fully repeatable experiment can be found at
https://archive.org/details/defaultdisambiguation.

2 Background
In this section, we briefly survey existing approaches to
editing composed programs, before giving a brief overview
of incremental parsing, sufficient for this paper’s purposes.

2.1 Delimiter-based Approaches
The traditional approach to language composition is to use
delimiters between languages. The most obvious way of
achieving this is to use explicit brackets to make clear a
switch from an outer to an inner language (e.g. ‘for (String
e: <<SELECT name FROM table>>) { ... }’), though this
is visually intrusive (what [Bravenboer et al. 2005, p. 4] call
“syntactic clutter“), and prevents the brackets being used
within the sub-language (e.g. in this case, the inner language
cannot use ‘>>’ as a bit-wise operator).
Naive approaches inherit a severe restriction from tradi-

tional parsing, which separates lexing (i.e. the splitting of the
user’s input into tokens) from parsing (i.e. the structuring of

https://archive.org/details/defaultdisambiguation


Default Disambiguation for Online Parsers SLE ’19, October 20–22, 2019, Athens, Greece

tokens into a parse tree): all the languages in the composi-
tion must share the same lexing rules. This restriction can
be somewhat eased if the lexer recognises the explicit brack-
ets and extracts text between them wholesale for separate
lexing and parsing (see e.g. [Tratt 2008, p. 13-14]), though it
is then hard for the lexer to accurately keep track of nested
brackets (e.g. should brackets in comments be counted or
not? and how does one know what format comments in the
inner language(s) are in?). A more sophisticated approach is
for the lexer and parser to interact (see e.g. [Van Wyk and
Schwerdfeger 2007]), such that the parse causes a switch in
lexing rules when input shifts to an inner language. This has
the advantage that brackets do not always need to be quite as
visually intrusive (e.g. one can use a difference in keywords
to identify a switch from one language to another), though
in the general case explicit brackets must still be used to
resolve ambiguities.

2.2 Scannerless Parsing
Generalised parsing can parse any Context-Free Grammar
(CFG), even those that are ambiguous. Scannerless pars-
ing [Visser et al. 1997] extends this such that lexing and
parsing are specified together. This removes the need for ex-
plicit brackets entirely, but leads to more ambiguities, since
traditional lexers resolve many ambiguities (e.g. between
identifiers and keywords) before parsing. This is challenging
because ambiguity is, in general, undecidable [Cantor 1962]
and even the best ambiguity heuristics fail to find all possi-
ble sources of ambiguity [Vasudevan and Tratt 2013]. Thus,
no matter how many static disambiguation operators one
uses, in general one cannot be sure if all possible points of
ambiguity have been covered. Furthermore, disambiguation
operators can cause scannerless parsers to become context-
sensitive [van Eijck 2007], the consequences of which remain
unclear. Although it is possible in some cases to use seman-
tic information such as types to aid disambiguation (see
e.g. [Vinju 2005]), this is not applicable to all languages.

2.3 Syntax Directed Editing
Traditional syntax directed editing avoids parsing text en-
tirely. In essence, users edit an AST directly, with incomplete
parts of a program being represented by holes. This avoids
the need for explicit delimiters, and sidesteps issues of am-
biguity completely. However, such systems are awkward to
use [Khwaja and Urban 1993, p. 2], for example only allow-
ing complete subtrees in the AST to be selected at a time
(e.g. for the expression ‘2 + 3 * 4’ one can select ‘2’ or ‘3 * 4’,
but not ‘2 + 3’), and quickly fell out of fashion. The modern
syntax directed editor MPS [Pech et al. 2013] alleviates some,
though not all, of these problems. However, it requires sig-
nificant expertise on the part of the language composition
author to make editing a pleasant experience, as the AST
structure places constraints on many editing operations.

assignment

Row
id

var

name

result
id

type

eq
= ;

semi
expr

<SQL>

BOS EOS

Root

...

Figure 2.An elided example of a parse tree in an incremental
parser with language boxes: nonterminals have a type and
zero or more children; terminals have a type (top) and a value
(bottom). The composition in question is, again, (outer) Java
and (inner) SQL. Here, the outer Java code is an assignment
(‘type name = ...;’). The right-hand side of the assignment
is an SQL language box (the node with type ‘<SQL>’): from
the perspective of the outer Java code, the SQL node is a
terminal (and hence its value is irrelevant). In reality, the
SQL node has a complete SQL parse tree underneath it: the
special Root, BOS (Beginning Of String), and EOS (End Of
String) nodes that every incremental parse tree contains, as
well as the actual SQL contents (elided to ‘...’ in this example).

2.4 Incremental Parsing
Parsing is traditionally a batch process: an entire file is fed
through a parser and a parse tree created from it. Incremental
parsing, in contrast, is an online process, continually parsing
text and updating a parse tree as the user types. In this paper
we make use of the incremental lexing and LR incremental
parsing algorithms ofWagner [1998], taking into account the
several fixes found in Diekmann [2019]. In this subsection
we provide a brief overview of this algorithm sufficient to
understand the rest of this paper.

The incremental lexer and parser both operate on the parse
tree. Parse tree nodes are either nonterminals (representing
rules in the grammar) or tokens (representing terminal sym-
bols). Nonterminal nodes have an immutable type (e.g. ‘expr’)
but a mutable list of child nodes. Tokens have a mutable type
(e.g. ‘int’) and a mutable value (e.g. ‘3’) but no children.

After input from the user is received, the incremental lexer
is run first. Using lookahead information, it identifies the
affected area of the change, updates or creates tokens as
necessary, and marks the path from each updated or cre-
ated token to the root as changed. The incremental parser
then runs, reparsing all subtrees with changes in them, and
creating or removing nonterminals as needed.

2.5 Language Boxes
Language boxes allow users to embed one language inside
another in the context of an incremental parser. From the



SLE ’19, October 20–22, 2019, Athens, Greece Lukas Diekmann and Laurence Tratt

perspective of an outer language, a language box is a terminal.
Since parsers care only about the type of a terminal, this is a
natural fit. In reality, language boxes do have content, though
it is not visible to the outer language: they contain a separate
parse tree for the inner language within them.

This simple definition belies its power. Consider our run-
ning Java and SQL example composition. Java’s grammar
must have a reference from Java’s expression rule to a spe-
cial symbol type ‘language box’ (conventionally represented
between angle brackets to visually separate it from rules and
tokens). At run-time, if the Java parse tree has an SQL lan-
guage box at the correct point, then Java considers the tree
to be syntactically correct. The SQL language box will have
its own SQL parse tree inside which may or may not be syn-
tactically correct. An elided example of such a tree-of-trees
can be seen in Figure 2.
Philosophically, language boxes thus form delimiters, al-

beit invisible ones, between languages: from a syntactic per-
spective, outer languages are ignorant of the contents of
inner languages and vice versa. Thus we get much of the
power of syntax-directed editing without the accompanying
difficulty of editing ASTs. At all points, all languages can be
manipulated as normal text using the incremental parsers.

3 The Outlines of a Solution
The chief weakness of language boxes is that they must be
inserted manually — this involves pressing a special key
combination, selecting the desired inner language from a list,
typing the content, and (in general) pressing a second special
key combination to complete the language box. When lan-
guage boxes are used infrequently, this is merely irritating,
but when language boxes are used frequently, it is a signifi-
cant usability issue, impeding the user’s flow. Eco, an editor
which supports language boxes [Diekmann and Tratt 2014],
slightly eases this problem by using information from the
incremental parser to highlight those languages valid at the
point of the cursor, though this is a mild palliative at best.

In an ideal world, we would be able to automatically insert
language boxes exactly, and only, when they are wanted by
the user. However, this is impossible in the general case be-
cause language composition is really grammar composition
in disguise, and thus subject to the same ambiguity problems
as generalised parsing (see Section 2.2). We must thus lower
our sights slightly, aiming to automatically insert, remove, or
resize language boxes correctly merely in the vast majority
of cases, with the remaining cases few enough in number
that the user is willing to override them manually. This still
leaves a broad solution space which we narrow down with
the following soft considerations.
First, a solution which requires language composition

authors (i.e. the people who actually compose grammars,
create code generators etc.) to provide additional hints or
commands to aid automatic language box insertion is less

likely to be used widely and/or correctly. The meta-system
underlying a language composition system is often complex,
and expecting language composition authors to be expert in
every part of it (as well as the domain they are composing
languages for!) is unrealistic. For example, it can be diffi-
cult to know whether a non-LR grammar is ambiguous or
not [Vasudevan and Tratt 2013] and whether one has dis-
ambiguated it in the expected way: grammar composition
magnifies such concerns, particularly as the number of lan-
guages in a composition grows.

Second, a solution which seriously degrades performance
would be unacceptable. For example, one simple way of find-
ing which language boxes to insert would be to reparse the
complete file on every keypress, which would be noticeably
slow for large files. Ideally, the theoretical performance guar-
antees of Wagner [1998] would be maintained as well as
good practical performance1.
Third, a solution which inserts language boxes unpre-

dictably is unlikely to find favour with users. Clearly, given
the hard constraint described at the start of this subsection,
users cannot expect perfect language box insertion all of
the time. However, a reasonable minimum expectation is
that it should be entirely predictable as to when automatic
language boxes are potentially inserted, removed, or resized;
and, ideally, largely predictable as to what the effects of such
actions are. Furthermore, false negatives (i.e. when the sys-
tem inserts, removes, or resizes language boxes incorrectly)
are likely to be particularly harshly received by users and
must be reduced to the minimum possible.

4 Automatic Language Boxes
In this section, we present a default disambiguation mecha-
nism in the form of the automatic language boxes algorithm.
Given an arbitrary language composition, it uses several
heuristics to find plausible places to insert, remove, or resize
language boxes. The algorithm makes use of the fact that it
has a surrounding parse tree to provide context, and knowl-
edge of where the user has recently made edits, to improve
the quality of its results.
To ease the algorithm’s description, we start by consid-

ering the problem of language box insertion, before then
adding additional functionality (e.g. removal and resizing).
We later validate the usefulness of automatic language boxes
in Section 6.

4.1 The Consideration Heuristic
The first challenge with automatic language boxes is to de-
cide upon a sensible heuristic for considering if/when to

1Interestingly, the original implementation of this incremental parsing
algorithm had to be triggered by the user (e.g. when a file was saved).
Modern machines are fast enough that even a naive implementation can
run comfortably on every keypress in nearly all reasonable cases.



Default Disambiguation for Online Parsers SLE ’19, October 20–22, 2019, Athens, Greece

Figure 3. An example of a syntax error in a Java and SQL
composition. In this example, we have turned off automatic
language box insertion to emphasise the fact that syntax
errors often occur in the middle of the language box we
would like to insert.

insert a language box – what we call the consideration heuris-
tic. If the consideration heuristic triggers too frequently, it
will lead to too many unwanted language boxes being in-
serted, each of which must then be manually removed by
the user. Conversely, if it triggers infrequently, it will not be
a useful aid to the user.

We use two related observations as the guides to our con-
sideration heuristic. First, by definition, language composi-
tion always consists of an outer language and one or more
inner languages2. It is thus a reasonable expectation that
most text typed in the outer language is intended to be in the
outer language. Second, the clearest indication that recently
typed text in the outer language might have been intended
for an inner language is that it leads to a syntax error in the
outer language.

Our consideration heuristic therefore triggers at the point
of each new syntax error. This is an entirely predictable
heuristic from a user perspective, though it does have two
consequences: the point of a syntax error is not always at
the beginning or end of the text that a user expects to be put
in a language box (see Figure 3); and this heuristic clearly
works better for languages whose syntaxes don’t overlap a
great deal (see Section 4.6). Happily, we can rely on the fact
that the incremental parser isolates syntax errors after they
occur [Wagner 1998, p. 93], so that there is no possibility of
old syntax errors being considered a second time.

4.2 The Candidates Heuristic
Once the consideration heuristic has triggered, we then have
to search for plausible nodes in the parse tree at which lan-
guage boxes could be inserted – what we call the candidates
heuristic. The trade-off here is that identifying too many
locations slows down the search and overwhelms the user
with possibilities; but identifying too few locations means
that useful candidates are missed. We thus define several
sub-heuristics which we then combine together. A candi-
dates heuristic can produce zero or more candidate language
boxes at any given point; those candidate language boxes
may cover different spans and/or be of different language
types. Before we define the candidates heuristics themselves,

2Note that these terms are relative: whenwe create a language box andmove
into it, the previously inner language now becomes the outer language.

1 def cnds_recogniser(node, lang):
2 lexer = lexer for lang starting at node
3 parser = parser for lang
4 cnds = []
5 while True:
6 token = lexer.next_token()
7 if token is None:
8 return cnds
9 parser.parse_token(token)
10 if parser.accepted():
11 cnds.append((node, token.end_pos, lang))
12 elif parser.error_node.type_ != "EOS":
13 return cnds

Figure 4. A generic candidates recogniser which produces
the ending offsets of each substring starting at node that
is valid in language lang. In essence, we create a lexer and
parser for lang (lines 2–3) and then try recognising sub-
strings that grow one token at a time (lines 6 and 9), though
note that the recogniser parser reuses the previous state. If
we reach the end of the parse tree we are complete (lines
7–8). If we successfully parse a substring, we add a candidate
to the list (lines 10–11). If a substring causes a parse error
on anything but the implicit EOS (End Of String) token, we
know that growing the substring further cannot fix the parse
and terminate the search (lines 12–13).

we first introduce the concept of recognisers, which all can-
didates heuristics use.

4.2.1 Recognisers
When a candidates heuristic has identified a node n in the
parse tree as the plausible start of a language box, we then
have to decide if one or more language boxes could start at
that point. Although it would be possible to use the normal
incremental parser to answer this question, it would require
significant setting up and tearing down which would be
tedious to program and slow to run. Instead we provide
candidates recognisers3 which are able to quickly return the
list of substrings valid in a language L starting at node n.

The main challenge for candidates recognisers is to decide
when to stop trying to recognise further input. If we stop too
early, we will fail to recognise valid language boxes, but if
we go too far, we will degrade performance. The technique
we use is to try recognising gradually growing substrings as
valid in an inner language, making use of the fact that the
recogniser parser implicitly reuses state from the previous
token. If a substring is not valid, we then check where the
parse failed: if it failed on the EOS (End Of String) token,
then it is possible that extending the substring might lead
to a valid parse, so we continue the search; but if it failed
earlier than the EOS token, then we know that extending

3Some languages (e.g. whitespace sensitive languages such as Python) need
slightly customised candidates recognisers.



SLE ’19, October 20–22, 2019, Athens, Greece Lukas Diekmann and Laurence Tratt

1 def parse_tree(parser, node):
2 cnds = []
3 v = global_version - 1
4 while node is not None:
5 for lang in composition:
6 if lang can be shifted before node.version(v):
7 cnds.extend(cnds_recogniser(node, lang))
8 node = node.parent(v)
9 return cnds
10

11 def stack(parser, node):
12 cnds = []
13 for state, node in reversed(parser.stack):
14 for lang in composition:
15 if lang can be shifted at state:
16 t = node.next_terminal()
17 cnds.extend(cnds_recogniser(t, lang))
18 return cnds

19 def line(parser, node):
20 cnds = []
21 while node.type_ not in ["BOS", "Newline"]:
22 for lang in composition:
23 if lang can be shifted before node:
24 cnds.extend(cnds_recogniser(node, lang))
25 node = node.prev_terminal()
26 return cnds

Figure 5. Simplified versions of our three candidates heuristics. Each is passed a node, which is the point at which an error
is detected, and finds sensible points before that node in the parse tree to be the possible starting point of language boxes
(using the candidates recogniser from Figure 4). The parse_tree candidates heuristic walks up the parse tree to find candidate
language boxes (line 6–7). Because the parse tree is, in a sense, only partially parsed at the point the candidates heuristic is
called, we have to view the parse tree as it was before parsing began (line 8). The stack candidates heuristic walks the parse
stack, finding the node matching each point in the stack (line 13) and then searches for candidate language boxes (line 15)
starting at the first terminal following that node (line 16). The line candidates heuristic searches backwards each token from
the error node (line 25) until the beginning of the line which contains that node (line 21) for candidate language boxes (line 23).

the substring cannot fix the parse and we stop the search.
Figure 4 shows a more formal version of this algorithm.
For example, consider the fragment ‘int x = SELECT 1

+ 2;’ in our running Java and SQL composition. If we start
a candidates recogniser at the ‘SELECT’ token, we first try
recognising ‘SELECT’ which leads to a syntax error at the
EOS token, so we continue. We then try recognising ‘SELECT
1’, which is valid SQL, so we add it to our candidates list
and continue. ‘SELECT 1 + ’ errors at the EOS token, so
we continue. ‘SELECT 1 + 2’ succeeds, so we add it to our
candidates list. ‘SELECT 1 + 2;’ errors at the ‘;’ token, so
the search then terminates, even if there is input after the
fragment.

4.2.2 The Parse Tree, Stack, and Line Heuristics
We eventually created three distinct candidates heuristics,
each of which has different strengths and weaknesses. We
now describe each candidates heuristic in detail; see Figure 5
for a semi-formal version of each.
The parse tree candidates heuristic aims to find plausible

candidates based on the structure of the parse tree. The intu-
ition underlying this is that a likely point to insert a language
box is around text that forms a subtree and that we can find
such points by recursively walking the parent nodes of the
node in which a syntax error was found. However, there is a
slight subtlety in that the parse tree is, by definition, broken
at the point the candidates heuristic is called. In a sense, the
incremental parser parses the tree in two stages, and the

candidates heuristic is called after the first of these, when
it is possible for newly inserted terminals to be detached
from the tree [Wagner 1998, p. 58, 60]. Fortunately, we can
solve this easily by using the versioning feature described
in Wagner [1998, p. 15] which allows us to view the tree as
if the first stage of parsing had not yet occurred.
The stack candidates heuristic is based on the idea that

each point in the parsing stack naturally defines a plausible
breaking point between one language and another. It walks
backwards over the parsing stack, at each point looking
at the associated node. This heuristic has two significant
advantages: the parsing stack is nearly always small, so few
additional places in the program need to be checked; and
if a language box can be inserted, parsing can continue as
normal from that position in the parsing stack.

The weakness of the parse tree and stack heuristics is that
both try relatively few locations, and that they rely on the
structure of the underlying LR grammars, which does not
always match human expectations of a language’s structure.
The line candidates heuristic is therefore very different, and
captures the intuition that many language boxes are intra-
line: it searches backwards for candidates, one node at a time,
from the error node to the beginning of the line that contains
the error. This heuristic ensures that all candidate locations
close to the error node are searched, but bounds the search
in a way that is unlikely to cause a noticeable slowdown.

In order for later stages in the algorithm to work correctly,
each candidate needs to have a valid parsing stack. While



Default Disambiguation for Online Parsers SLE ’19, October 20–22, 2019, Athens, Greece

1 def recreate_parsing_stack(lbox):
2 v = global_version - 1
3 path_to_lbox = set()
4 parent = lbox.parent(v)
5 while True:
6 path_to_lbox.add(parent)
7 parent = parent.parent(v)
8 if parent is None:
9 break
10

11 parser = initialise parser
12 node = root node
13 while node is not lbox:
14 if node in path_to_lbox:
15 node = node.children(v)[0]
16 else:
17 parser.parse(node)
18 node = node.next_lookahead()

Figure 6. An algorithm for efficiently creating a parse stack
after a language box has been inserted into the parse tree.
We do this in two steps. First we collect all the nodes on
the path from the language box to the root node (lines 2–9).
Second we then follow equivalent steps as when a node is
marked as changed and the incremental parser runs [Wag-
ner 1998, p. 63]: we reparse all nodes up to the language box
(lines 11–18), skipping subtrees which can’t be relevant to the
parsing stack (lines 17–18). The next_lookahead function
(line 18) returns the next node in the parse tree in preorder.
Note that we have to iterate over a previous version of the
parse tree: node.parent(V) and node.children(V) both
work in the same way e.g. node.parent(V) returns node’s
parent as when node was in version V (which may be dif-
ferent to node’s parent in the current version of the tree,
global_version).

candidates produced by the stack heuristic naturally do so,
we need to create a valid parsing stack for candidates from
the parse tree and line heuristics. Fortunately, we can do this
efficiently by using a similar approach to that used by the
incremental parser to reparse nodes (see Figure 6).

4.3 Combining Heuristics
As we shall see in Section 6, each of our candidates heuristics
has strengths and weaknesses. We therefore combine them
into a single candidates heuristic, imaginatively called all.
This aggregates the candidates from the individual heuristics,
filters out those which immediately break the surrounding
context, ranks the remainder, and filters out all of the non-
best candidates.
We first filter out language boxes which are not valid

in their immediate context. By definition, our candidates
heuristics will not have suggested candidate boxes which are
syntactically incorrect relative to the preceding context, but
they do not check the following context. A simple solution
here might seem to be to filter out language boxes which are

followed by errors, but this would lead to us filtering out can-
didates when the user has deliberately left a later part of the
program in a syntactically incomplete state. We thus filter
out only those candidates where the first non-whitespace to-
ken following the candidate language box contains an error.
The reason we specify the first non-whitespace token, rather
than simply the first token, is that grammars for incremental
parsing almost always define whitespace as a token. This
means that the incremental parser often inserts a whitespace
token after a candidate language box, and that whitespace
token is by definition syntactically valid, though not partic-
ularly insightful. We thus need to skip such tokens in order
to get to a token which tells us something useful about the
context surrounding a candidate language box.

We then rank candidates by how far we can parse success-
fully after them without encountering a syntax error. How-
ever, since different language boxes can encompass different
parts of the input, and since inserting different language
boxes can change how much input subsequent tokens con-
sume, finding a simple definition of “how far” is surprisingly
difficult. Our high-level solution is to continue parsing after
each candidate language box and use the absolute character
offset of the first subsequent parsing error as a reasonable
proxy for “how far”. In order to bound this check, we first
take all the candidates and non-deterministically select one
of those whose end character offset is the equal largest: we
then parse 10 further tokens beyond that language box’s end
to find the ‘maximal parse point’. For each remaining candi-
date language box, we then try parsing beyond it. If we hit
a parsing error before the maximal parse point, we discard
the candidate language box; if we parse up to, or beyond, the
maximal parse point, we consider the candidate language
box equally good to the initial candidate language box. Note
that the ‘or beyond’ clause is needed because different candi-
date language boxes may lead to the remaining input being
lexed in different ways, which may lead to tokens of different
lengths being created.

4.4 Applying or Presenting Candidates
Once the ‘all’ candidates heuristic has run, we will have zero
or more possible language boxes to insert. If there are zero
candidates, then the algorithm completes. If there is one can-
didate, we simply insert it to the user’s program. If the user
is unhappy with the insertion, they can remove it by press-
ing undo (conventionally Ctrl + Z ). However, implemented
naively, the language box can simply reappear on each sub-
sequent keypress, which is unlikely to be desired. Therefore
removing a language box in this way marks a flag noinsert
on the error node identified by the consideration heuristic.
The consideration heuristic ignores nodes where this flag
is set to true so that language boxes are not reinserted at
a point where the user has explicitly indicated they do not
want them.



SLE ’19, October 20–22, 2019, Athens, Greece Lukas Diekmann and Laurence Tratt

(a) (b)

(c) (d)

Figure 7. An example of multiple language box candidates in our running Java and SQL composition. (a) The user is editing
an existing Java programme, and has just deleted the expression after ‘remote’. (b) Inserting an SQL statement leads to a
syntax error in Java. The automatic language box algorithm then finds multiple valid language box candidates. Rather than
picking one at random, the syntax error remains, and the existence of multiple candidates is indicated to the user by the light
bulb icon next to line 3. (c) Clicking on the light bulb displays the candidate language boxes that could be inserted. In this
example, the user clicks on the first in the drop-down list. (d) The appropriate language box is inserted.

However, if there are multiple candidates, we then have
two choices: we could insert one of the candidates and present
the others to the user as choices; or simply present all the
candidates as choices without inserting any of them. The
former approach is surprisingly hard to do well. If we were
to non-deterministically select one candidate and insert it,
the user would be unable to predict what was about to hap-
pen on each key press. We could instead rank candidates
(perhaps by ‘relevance’, or length, or starting position etc.),
but we were unable to find a ranking system which matches
the user’s intentions often enough to be worthwhile. We
therefore simply present all the candidates as options to the
user from which they must choose one (see Figure 7). As we
shall see in Section 6, this happens rarely enough that it is
not a significant problem. It is also worth noting that this is
an example of a fundamental difference between batch and
online parsing: it is entirely feasible for us to ask the user
for their help in choosing language boxes as that choice can
be made once and recorded permanently, rather than having
to be made anew on each (batch) parse.

4.5 Removing and Resizing
Automatically inserted language boxes start life in the uncom-
mitted state, which means that they can then be considered
possible candidates for automatic removing and resizing.
Language boxes move to the committed state when the user
shows that they have finished editing at the current point
by moving the cursor outside of the language box. Users
can manually change a committed box to uncommitted if
they later want it to be subject to the algorithm again. If the
content of an uncommitted language box, or its surround-
ing area, changes then it may be automatically removed or
resized by the algorithm.

4.5.1 Removing
The simplest example of when we might want an automatic
language box to be removed is if the user deletes a character

immediately after an automatic language box has been in-
serted. For example, if an SQL language box is inserted as
soon as the user types ‘int x = SELECT * FROM t’ and
the user then presses backspace, the automatic language box
should disappear because ‘SELECT * FROM’ is valid Java and
we want to prioritise the outer language in a composition
(see Figure 8). The full set of situations that we handle is as
follows:

1. If an uncommitted language box has a syntax error
within it, and if its contents are valid in the outer lan-
guage, then the language box is removed.

2. If an uncommitted language box becomes part of a
syntax error in the outer language, and if its contents
are valid in the outer language, then the language box
is removed.

3. If an uncommitted language box’s content is valid in
both the inner and outer languages, then the language
box is removed if that would not then cause subsequent
parse errors. Following the precedent from Section 4.3,
we use the first non-whitespace token after the lan-
guage box as a proxy for this.

Note, that while the first two situations are triggered by
an error occurring either inside the box or on the box itself,
the third situation has no clear trigger. On each run of the
incremental parser we thus check the third situation for
each uncommitted language box in the program. Fortunately,
unless the user has manually marked some language boxes
as uncommitted, the only uncommitted language boxes can
be in the location of the cursor, so their number is typically
small and the performance implications trivial.

4.5.2 Resizing
Although we do not change the starting position of an un-
committed language box (which can be highly distracting),
its end position can be automatically changed to encom-
pass more or less content (Figure 1 shows an example of the
former). A language box is expanded to encompass more



Default Disambiguation for Online Parsers SLE ’19, October 20–22, 2019, Athens, Greece

(a) (b)

Figure 8. A (slightly contrived) example showing automatic language box removal in our Java and SQL composition. (a)
The user meant to write a Java expression, but forgot the second ‘*’ after ‘from’: thus an SQL language box was inserted.
(b) The user moves the cursor to before ‘from’ and inserts the missing ‘*’. This makes the contents of the SQL language box
syntactically invalid. Since its contents are, however, valid in the outer language (Java), the language box is removed.

content if: its parse tree does not contain a syntax error; if
encompassing the additional content does not cause a syntax
error within the language box; and if removing the content
from the outer language does not cause syntax errors in the
first non-whitespace token in the outer language. Language
boxes are shrunk to encompass less content if they contain
a syntax error and moving the content to the outer language
both fixes the error inside the language box and does not
introduce additional syntax errors in the outer language.
Both growing and shrinking can be handled with our ex-

isting candidates recogniser (see Section 4.2.1). While there
is a clear indicator for when a language box may need to be
shrunk (e.g. when it contains an error), this is not the case
for expansion. We must therefore run our altered candidates
recogniser at the start of each uncommitted language box;
fortunately, as in automatic language box removal (see Sec-
tion 4.5.1), there are almost never enough of these to cause
performance concerns. The candidates recogniser returns all
the possible right hand extents of the language box. We then
filter out candidates which do not meet the above conditions.
If none remain, the algorithm completes; if one remains, we
resize the language box appropriately; if more than one re-
mains, we present the multiple options to the user in the
same way as in Section 4.4.

4.6 Highly Ambiguous Compositions
Some language compositions are so fundamentally ambigu-
ous that normal automatic language boxes do not work well.
For example, consider a composition of Java (or any other
programming language!) with HTML, where HTML lan-
guage boxes can be used wherever Java expressions are valid.
Since HTML’s lexer can match almost any text, nearly all
syntax errors in Java can be resolved by wrapping text in an
HTML language box, which is unlikely to match the user’s
intentions.

To helpwith such cases, we thus have to relax the ‘no hints’
constraint from Section 3, allowing language composition
authors to specify either the valid or the invalid token types
which can appear at the start of a language box. For example,
in the case of the Java and HTML composition, a good choice
is to specify HTML tags as being the only valid starting token
types for a candidate language box. Any such hints given by
language composition authors are checked in the candidates
recogniser so that inappropriate candidates do not cause
pointless work in later stages of the algorithm.

5 Limitations
Since automatic language boxes are a default disambiguation
mechanism, there are inevitably situations where they do
not perform as well as hoped. Despite (as we shall see in
Section 6) such cases being rare, it is useful to enumerate
some of their fundamental weaknesses.

Although our solution to highly ambiguous compositions
(see Section 4.6) workswell when the outer languagematches
specific input (e.g. Java) and the inner language matches
nearly anything (e.g. HTML), the reverse situation does not
workwell. For example, if we composeHTML and Javawhere
Java expressions are valid wherever HTML tags are valid,
automatic language boxes almost never trigger, since there
are few ways of making a syntax error in HTML. The only
way this can be solved is by using a consideration heuristic
which is not triggered by syntax errors, but it is not clear to
us what a good heuristic along these lines might look like.

Lexical ambiguities between languages can also cause sub-
tle problems. For example, imagine that we compose Java
and Lua, such that Lua expressions are valid wherever Java
expressions are valid and then input ‘int x = 3 // 4 +
1;’. This leads to a syntax error at the beginning of the line
following this statement and no automatic language boxes
are inserted. However, this is confusing for users, since ‘//’
is Lua’s integer division operator, and they might reasonably
expect a Lua language box to be put around ‘3 // 4’ and/or
‘3 // 4 + 1’. However, since ‘//’ is the Java comment prefix,
‘// 4 + 1;’ is ignored entirely, and the almost inevitable
resulting syntax error is postponed to the following line or
later: in such cases, not even the line candidates heuristic
can find a starting point for language boxes that matches a
human’s intuition. Although this example could be solved
by searching a fixed number of lines backwards, only an
unbounded backwards search, with its obvious performance
problems, can solve the general case. Fortunately, such am-
biguities are sufficiently rare that maintaining the simplicity
of the line candidates heuristic seems a reasonable choice.
Automatic language boxes inherit incremental parsing’s

weaknesses on multiline comments and strings. For example,
in a naive Java grammar, typing ‘/*’ without the matching
‘*/’ causes the entire rest of the file (whether it is inside or
outside a language box) to be relexed and tokens flattened.
Interestingly, a slight variant on language boxes solves this
problem for incremental parsing [Diekmann 2019, p. 108–
122]. However, this is not applicable to our situation, where
candidates recognisers may end up lexing until the end of



SLE ’19, October 20–22, 2019, Athens, Greece Lukas Diekmann and Laurence Tratt

the file. Fortunately, this is unlikely to be a performance
problem in practice. First, this can only happen if an inner
language has sufficient lexical overlap with the outer lan-
guage (e.g. sharing the same syntax for comments) and the
rest of a file matches both language’s lexing rules. Second,
lexing is a fast activity in general and particularly fast in the
recogniser because we are not mutating the parse tree.

6 Evaluation
To evaluate the efficacy of automatic language boxes, a large-
scale experiment is necessary. We first present our method-
ology before looking at the results of our experiment.

6.1 Methodology
Since there is no equivalent work that we know of, we have
to define our own methodology.

First, in order to produce numbers that are plausibly rep-
resentative of situations that real users might encounter, we
created 12 language compositions of real-world languages,
and created 5,100 tests from real-world programs. Each test
is a tuple (base file, base file function definition or expression
offset, base file function definition or expression span, func-
tion definition or expression fragment) where ‘base file’ is an
instance of the outer language in the composition and ‘frag-
ment’ is an instance of the inner language. For each test, we
then loaded base file into our extension of Eco; emulated key
presses which move the cursor to the offset and deleted span
characters; and then emulated key presses which inserted
fragment. For each test we recorded whether a language box
was inserted or not, the number of characters covered by
any such language box, and the cause of any errors (e.g. an
insertion led to subsequent errors; or no candidates were
found at all).

Second, we need to classify the outcome of each test. The
overall question we want an answer to is: do automatic lan-
guage boxes work well in most cases? Answering this is not
completely trivial, because there are several possible out-
comes from inserting text in an inner language. We break
these down into six categories:

Complete insertion A language box was automatically
inserted around all of the fragment.

Partial insertion (no errors) A language box was au-
tomatically inserted around part of the fragment, and
the resulting text that was left in the outer language
did not cause any errors.

Partial insertion (errors) A language box was auto-
matically inserted around part of the fragment, but
the resulting text that was left in the outer language
caused one or more syntax errors later in the file.

No insertion (valid) No language box was automati-
cally inserted because the fragment was valid in the
outer language.

No insertion (errors) No language box was automati-
cally inserted even though the fragment was not valid
in the outer language.

No insertion (multi) No language box was automati-
cally inserted because there were multiple candidates.

We then group these under ‘acceptable’ – complete inser-
tion, partial insertion (no errors), no insertion (valid), and
no insertion (multi) – and ‘unacceptable’ – partial insertion
(errors), no insertion (errors). If automatic language boxes
are to be useful, we would need to see a high value for the
acceptable group and a low value for the unacceptable group.

6.1.1 Language Compositions
To create our 12 language compositions, we used the gram-
mars of 4 real-world languages (Java 5, Lua 5.3, PHP 5.6, and
SQLite 3.27). For each language composition of L1 (outer) and
L2 (inner), we allow expressions and function definitions in
L2 to be used wherever expressions and function definitions
in L1 are normally valid. For example, in the composition
JavaLua, Java is the outer language and Lua the inner lan-
guage: Lua function definitions and expressions can be used
wherever Java function definitions and expressions (respec-
tively) are valid. The one exception to this is when SQL is
the inner language: since our corpus consists of SQL state-
ments, it makes little sense to allow SQL statements where a
Java/Lua/PHP function is valid. In this case, we restrict the
composition to only insert SQL statements where Java/Lu-
a/PHP expressions are valid (i.e. we do not insert function
definitions at all). The particular language compositions we
created can be seen as the x-axis labels in Table 1.

6.1.2 Program Corpus
We then collected a corpus of inputs in each language. For
PHP, we used the source code of Wordpress 4.6.13, which
consists of 365 files that are valid when parsed with our PHP
grammar, which total 174,147 LoC after we have stripped out
the embedded HTML (which is not part of the PHP language
as such). For Java, we used the Java Standard Library 5 which
consists of 6,556 files and 1,888,190 LoC. For Lua, we used
Lua’s test suite, which consists of 32 files totalling 13,990
LoC. For SQL, we used SQLite’s test suite, consisting of 1,042
test files which contain 27,525 tests totalling 95,533 LoC.
We then ran each file in the corpus through a parser to

identify the offsets and spans of function definitions and
expressions, collecting the longest match when an expres-
sion contained several subexpressions. For PHP and Java we
found that most expressions are so simple (e.g. a function
call with numeric parameters) that they make highly repeti-
tive, and uninformative, tests: in these languages, we thus
extracted only expressions which form the right hand side of
assignments, since we found that these more often contain
somewhat interesting expressions. The situation in our Lua
corpus was almost reversed, with many of the syntactically



Default Disambiguation for Online Parsers SLE ’19, October 20–22, 2019, Athens, Greece

Ja
va
Lu
a

Ja
va
PH

P

Ja
va
SQ

L

Lu
aJ
av
a

Lu
aP
H
P

Lu
aS
QL

PH
PJ
av
a

PH
PL
ua

PH
PS
QL

SQ
LJ
av
a

SQ
LL
ua

SQ
LP
H
P

Ov
er
al
l

# Tests 888 864 573 275 255 130 562 529 355 233 212 224 5,100

All 98.8% 93.4% 99.3% 98.9% 94.9% 95.4% 99.3% 97.7% 97.5% 97.9% 97.6% 85.3% 96.8%
Parse tree 76.4% 91.1% 100.0% 98.5% 93.3% 93.8% 99.5% 68.6% 98.3% 97.9% 96.2% 83.9% 89.4%
Stack 96.6% 93.8% 99.3% 97.5% 92.9% 67.7% 99.5% 97.9% 97.5% 97.0% 97.6% 85.3% 95.6%
Line 96.4% 79.9% 99.0% 98.9% 94.9% 95.4% 99.3% 95.5% 97.5% 97.9% 97.6% 85.3% 93.8%

Table 1. The total percentage of acceptable outcomes for each benchmark and heuristic. Acceptable outcomes are that: an
automatic language box (covering all or part of the fragment) was inserted, causing no syntax errors; no language box was
inserted since the fragment was also valid in the outer language; or there were multiple candidates which were presented to
the user. Unacceptable outcomes are those which lead to syntax errors.

interesting expressions occurring in assert statements. We
thus extracted all expressions from Lua files. Overall, we iden-
tified 2,474 expressions and 518 functions for PHP, 52,687
expressions and 6,743 functions for Java, 4,476 expressions
and 230 functions for Lua, and 61,065 statements for SQL.

6.2 Results
We break the results of our experiment down in two ways: by
acceptable results per language composition (Table 1); and by
detailed outcome in the overall benchmark suite (Table 2). In
both cases we show the differences in the various candidates
heuristics, which shows that while each has strengths and
weaknesses, collectively they work well. Appendix A con-
tains several tables that give a more detailed breakdown of
information that is, in a sense, a combination of that between
Tables 1 and 2.

The results of Table 1 are clear: 96.8% of tests have an ac-
ceptable outcome with the ‘all’ candidates heuristic. Table 2
allows us to explore the sub-categories. 65.8% of tests insert
a complete language box around the fragment (by definition
making the program syntactically correct) and 25.3% of tests
have fragments which are valid in the inner and outer lan-
guage. If we exclude tests whose fragments are valid in the
inner and outer language (i.e. cases where the disambigua-
tion mechanism cannot expect to do anything useful), then
88.1% of the remaining cases insert a language box around
the whole fragment – in other words, automatic language
boxes match one reasonable (if slightly naive) expectation
in the vast majority of cases. The remainder of cases are
mostly acceptable outcomes: partial language box insertions
without errors (i.e. part of the fragment is put in a language
box but the remainder remains in the outer language) and
no insertions due to multiple candidates are both roughly
equal in proportion.

That leaves the two unacceptable cases. ‘Partial insertions
(errors)’ (2.3% of tests) are cases where a language box was
inserted around part of the fragment, but some was left in
the outer language, causing a syntax error later in the file.

One solution to this might seem to be to increase our search
of the parse tree for errors after a language box has been in-
serted, but this would come at a cost since we cannot reliably
distinguish syntax errors caused by language box insertion
from syntax errors caused by incomplete or deliberately in-
correct user input. A better solution might be to experiment
with comparing the number and location of syntax errors
before and after candidate language box insertion, though
this can only lessen, not fully solve, the problem. ‘No inser-
tions (errors)’ (0.8% of tests) means that a language box was
not inserted around the fragment because it seemed to be
valid in the outer language even though it caused a syntax
error later in the program. Solving this problem suffers from
the same problem as for partial insertions with errors, and,
since it is such a small proportion, is not a significant issue.
Both Tables 1 and 2 present the statistics for our individ-

ual candidates heuristics. One might assume that the lines
candidates heuristic is the most effective, because it correctly
deals with nearly all insertions of expression fragments. How-
ever, its weakness is the JavaPHP composition with only
79.9% tests having an acceptable outcome. This is largely be-
cause the initial line of a PHP function (e.g. ‘function x()
{’) looks like a Java function (with a return type ‘function’):
it is thus parsed as a Java function which leads to syntax
errors on subsequent lines of PHP code.

We expected the parse tree candidates heuristic to be more
effective than the stack candidates heuristic, but the latter
(95.6%) has a noticeably greater proportion of acceptable
outcomes than the former (89.4%). A generic weakness of the
parse tree heuristic is that many languages have grammar
rules along the lines of ‘if (expr) { ... }’ i.e. we expect
a language box to be inserted in the middle of the grammar
rule. This defeats the parse tree heuristic entirely, though
the stack heuristic works as per human intuition. The stack
candidates heuristic, however, performs poorly on LuaSQL
because of the nature of Lua’s grammar. For example, in
the mixed Lua/SQL program ‘x = SELECT a, b FROM t’,
everything up to ‘b’ can be parsed in Lua, leading to an LR



SLE ’19, October 20–22, 2019, Athens, Greece Lukas Diekmann and Laurence Tratt

Complete
insertion
(No errors)

Partial
insertion
(No errors)

Partial
insertion
(Errors)

No insertion
(Valid)

No insertion
(Errors)

No insertion
(Multi)

All 65.8% 2.8% 2.3% 25.3% 0.8% 2.9%
Parse tree 58.5% 3.1% 1.0% 25.3% 9.6% 2.5%
Stack 64.9% 2.9% 2.0% 25.3% 2.4% 2.5%
Line 63.3% 2.8% 2.3% 25.3% 3.8% 2.5%

Table 2. The total percentage of outcomes by category. See page for a detailed description of each category. The largest
categories by far are ‘complete insertion (no errors)’, which means that a language box was inserted around the entire input
and ‘no insertion (valid)’ which means that no language box was inserted because the fragment was valid in the outer language.
Significantly, the unacceptable categories (‘partial insertion (error)’ and ‘no insertion (error)’) constitute a very small portion
of the total.

reduction action which removes ‘SELECT’ from the parsing
stack, making it impossible for the heuristic to identify that
as a valid location to insert a language box at.

6.3 Threats to Validity
There are two overall threats to validity to our evaluation.

First, it is possible that our suite of language composi-
tions and corpus of programs are unrepresentative. We have
reduced these chances somewhat by using 4 real-world pro-
gramming languages and a fairly large number ofwell-known
programs written in those languages, but it is possible to
compose very different styles of languages, and to compose
them in very different ways. Doing so might change our
view of the automatic language boxes algorithm.

Second, we have made various suggestions about perfor-
mance needs in this paper, but Eco is a poor vehicle for evalu-
ating whether automatic language boxes match such claims:
it is written in Python and the GUI runs only in CPython, a
particularly slow implementation; and Eco’s data-structures
were originally designed to aid experimentation, and not
performance. For example, nodes in Eco’s parse tree are very
heavy weight (with a base size of around 2KiB per node,
which grows rapidly as undo history is added), and do not
include any of the optimisations described in Wagner [1998]
(which would reduce the base node size to approximately a
tenth of its current size and substantially reduce the costs of
additional undo history). Despite that, editing performance
with automatic language boxes is rarely noticeable. To try
and get some idea of what the overhead might be with a
more efficient implementation, we altered Eco so that it can
be run without the GUI on PyPy, a faster implementation
of Python. On a Xeon CPU E3-1270 3.60GHz machine, we
then recorded the time each fragment took to be inserted.
The average per-keypress wall-clock time (including every-
thing associated with automatic language boxes) was 0.004s.
Out of 5,100 tests, 7 (0.14%) had an average per-keypress
wall-clock time above 0.1s (often considered the threshold
at which humans start to perceive some lag from typing),

with a worst case of 0.30s. These results are fairly good as-is,
although we believe that a more efficient implementation
could reduce these timings by at least an order of magnitude.

7 Conclusions
In this paper we showed that default disambiguation within
an incremental parser works well for language composition,
providing a new point in the editing design space.

Acknowledgments
This research was funded by the EPSRC Fellowship Lecture
(EP/L02344X/1).

References
Martin Bravenboer, Rob Vermaas, Jurgen Vinju, and Eelco Visser. 2005.

Generalized type-based disambiguation of meta programs with concrete
object syntax. In GPCE. 157–172.

David G. Cantor. 1962. On the Ambiguity Problem of Backus Systems.
J. ACM 9, 4 (Oct. 1962), 477–479.

Lukas Diekmann. 2019. Editing composed languages. Ph.D. Dissertation.
King’s College London.

Lukas Diekmann and Laurence Tratt. 2014. Eco: A language composition
editor. In SLE. 82–101.

Amir Ali Khwaja and Joseph E. Urban. 1993. Syntax-directed Editing Envi-
ronments: Issues and Features. In SAC. 230–237.

Vaclav Pech, Alex Shatalin, and Markus Voelter. 2013. JetBrains MPS As a
Tool for Extending Java. In PPPJ. 165–168.

Laurence Tratt. 2008. Domain Specific Language Implementation via
Compile-Time Meta-Programming. TOPLAS 30, 6 (Oct. 2008), 1–40.

Jan van Eijck. 2007. Let’s Accept Rejects, But Only After Repairs. In Liber
Amicorum for Paul Klint. 117–128.

Eric R. VanWyk andAugust C. Schwerdfeger. 2007. Context-aware Scanning
for Parsing Extensible Languages. In GPCE. 63–72.

Naveneetha Vasudevan and Laurence Tratt. 2013. Detecting Ambiguity in
Programming Language Grammars. In SLE. 157–176.

Jurgen Vinju. 2005. A Type-driven Approach to Concrete Meta Programming.
Technical Report SEN-E0507. CWI.

Eelco Visser et al. 1997. Scannerless generalized-LR parsing. Technical Report
P9707. Universiteit van Amsterdam.

Tim A. Wagner. 1998. Practical Algorithms for Incremental Software De-
velopment Environments. Ph.D. Dissertation. University of California,
Berkeley.



Default Disambiguation for Online Parsers SLE ’19, October 20–22, 2019, Athens, Greece

A Tables
In this appendix, we show detailed outcomes by candidates heuristic, in similar fashion to Table 2.

Complete
insertion
(No errors)

Partial
insertion
(No errors)

Partial
insertion
(Errors)

No insertion
(Valid)

No insertion
(Errors)

No insertion
(Multi)

JavaLua 56.4% 2.4% 1.1% 34.6% 0.1% 5.4%
JavaPHP 86.3% 4.7% 4.4% 1.5% 2.2% 0.8%
JavaSQL 94.4% 0.2% 0.7% 4.7% 0.0% 0.0%
LuaJava 51.3% 4.4% 0.4% 41.8% 0.7% 1.5%
LuaPHP 84.3% 6.7% 1.2% 0.8% 3.9% 3.1%
LuaSQL 86.2% 0.8% 1.5% 8.5% 3.1% 0.0%
PHPJava 42.0% 4.8% 0.5% 49.6% 0.2% 2.8%
PHPLua 47.8% 3.2% 1.7% 42.0% 0.4% 4.7%
PHPSQL 93.5% 0.0% 2.3% 3.9% 0.3% 0.0%
SQLJava 32.2% 0.9% 1.3% 60.9% 0.9% 3.9%
SQLLua 32.1% 1.9% 2.4% 50.0% 0.0% 13.7%
SQLPHP 60.3% 0.4% 14.7% 23.2% 0.0% 1.3%

Table 3. The all candidates heuristics

Complete
insertion
(No errors)

Partial
insertion
(No errors)

Partial
insertion
(Errors)

No insertion
(Valid)

No insertion
(Errors)

No insertion
(Multi)

JavaLua 36.8% 0.0% 0.2% 34.6% 23.3% 5.0%
JavaPHP 83.2% 6.4% 0.5% 1.5% 8.4% 0.0%
JavaSQL 95.3% 0.0% 0.0% 4.7% 0.0% 0.0%
LuaJava 52.7% 3.6% 0.4% 41.8% 1.1% 0.4%
LuaPHP 82.7% 6.7% 0.8% 0.8% 5.9% 3.1%
LuaSQL 84.6% 0.8% 1.5% 8.5% 4.6% 0.0%
PHPJava 37.4% 10.7% 0.2% 49.8% 0.4% 1.6%
PHPLua 19.7% 2.3% 0.2% 42.2% 31.2% 4.5%
PHPSQL 94.4% 0.0% 1.4% 3.9% 0.3% 0.0%
SQLJava 32.2% 0.4% 0.4% 60.9% 1.7% 4.3%
SQLLua 32.5% 0.5% 1.9% 50.0% 1.9% 13.2%
SQLPHP 58.5% 0.0% 12.5% 23.2% 3.6% 2.2%

Table 4. The parse tree candidates heuristics



SLE ’19, October 20–22, 2019, Athens, Greece Lukas Diekmann and Laurence Tratt

Complete
insertion
(No errors)

Partial
insertion
(No errors)

Partial
insertion
(Errors)

No insertion
(Valid)

No insertion
(Errors)

No insertion
(Multi)

JavaLua 54.5% 2.4% 0.5% 34.6% 2.8% 5.2%
JavaPHP 87.3% 4.9% 4.1% 1.5% 2.2% 0.1%
JavaSQL 94.4% 0.2% 0.7% 4.7% 0.0% 0.0%
LuaJava 49.8% 5.1% 0.4% 41.8% 2.2% 0.7%
LuaPHP 82.4% 6.7% 1.2% 0.8% 5.9% 3.1%
LuaSQL 58.5% 0.8% 0.8% 8.5% 31.5% 0.0%
PHPJava 43.4% 5.2% 0.4% 49.8% 0.2% 1.1%
PHPLua 48.0% 3.4% 0.2% 42.2% 1.7% 4.3%
PHPSQL 93.5% 0.0% 2.3% 3.9% 0.3% 0.0%
SQLJava 31.3% 0.9% 1.7% 60.9% 1.3% 3.9%
SQLLua 32.5% 1.9% 2.4% 50.0% 0.0% 13.2%
SQLPHP 59.8% 0.4% 14.7% 23.2% 0.0% 1.8%

Table 5. The stack candidates heuristics

Complete
insertion
(No errors)

Partial
insertion
(No errors)

Partial
insertion
(Errors)

No insertion
(Valid)

No insertion
(Errors)

No insertion
(Multi)

JavaLua 54.6% 2.4% 1.1% 34.6% 2.5% 4.8%
JavaPHP 74.0% 4.2% 4.3% 1.5% 15.9% 0.2%
JavaSQL 94.1% 0.2% 0.7% 4.7% 0.3% 0.0%
LuaJava 51.3% 4.4% 0.4% 41.8% 0.7% 1.5%
LuaPHP 84.3% 6.7% 1.2% 0.8% 3.9% 3.1%
LuaSQL 86.2% 0.8% 1.5% 8.5% 3.1% 0.0%
PHPJava 43.4% 5.2% 0.5% 49.6% 0.2% 1.1%
PHPLua 45.6% 3.2% 1.7% 42.0% 2.6% 4.7%
PHPSQL 93.5% 0.0% 2.3% 3.9% 0.3% 0.0%
SQLJava 32.2% 0.9% 1.3% 60.9% 0.9% 3.9%
SQLLua 32.1% 1.9% 2.4% 50.0% 0.0% 13.7%
SQLPHP 60.3% 0.4% 14.7% 23.2% 0.0% 1.3%

Table 6. The line candidates heuristics


	Abstract
	1 Introduction
	2 Background
	2.1 Delimiter-based Approaches
	2.2 Scannerless Parsing
	2.3 Syntax Directed Editing
	2.4 Incremental Parsing
	2.5 Language Boxes

	3 The Outlines of a Solution
	4 Automatic Language Boxes
	4.1 The Consideration Heuristic
	4.2 The Candidates Heuristic
	4.3 Combining Heuristics
	4.4 Applying or Presenting Candidates
	4.5 Removing and Resizing
	4.6 Highly Ambiguous Compositions

	5 Limitations
	6 Evaluation
	6.1 Methodology
	6.2 Results
	6.3 Threats to Validity

	7 Conclusions
	Acknowledgments
	References
	A Tables

